Java 实现高斯模糊算法处理图像

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。

简介

高斯模糊(Gaussian Blur)是美国Adobe图像软件公司开发的一个图像处理软件:Adobe Photoshop(系列)中的一个滤镜,具体的位置在:滤镜—模糊——高斯模糊!高斯模糊的原理中,它是根据高斯曲线调节像素色值,它是有选择地模糊图像。说得直白一点,就是高斯模糊能够把某一点周围的像素色值按高斯曲线统计起来,采用数学上加权平均的计算方法得到这条曲线的色值,最后能够留下人物的轮廓,即曲线.是指当 Adobe Photoshop 将加权平均应用于像素时生成的钟形曲线。 在PS中间,你应该知道所有的颜色不过都是数字,各种模糊不过都是算法。把要模糊的像素色值统计,用数学上加权平均的计算方法(高斯函数)得到色值,对范围、半径等进行模糊,大致就是高斯模糊。

原理

周边像素的平均值

所谓"模糊",可以理解成每一个像素都取周边像素的平均值。

上图中,2是中间点,周边点都是1。 "中间点"取"周围点"的平均值,就会变成1。在数值上,这是一种"平滑化"。在图形上,就相当于产生"模糊"效果,"中间点"失去细节。 显然,计算平均值时,取值范围越大,"模糊效果"越强烈。

下图分别是原图、模糊半径3像素、模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度看,就是数值越平滑。

接下来的问题就是,既然每个点都要取周边像素的平均值,那么应该如何分配权重呢? 如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。

正态分布的权重

正态分布显然是一种可取的权重分配模式。 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。

高斯函数

上面的正态分布是一维的,图像都是二维的,所以我们需要二维的正态分布。

正态分布的密度函数叫做"高斯函数"(Gaussian function)。它的一维形式是:

其中,μ是x的均值,σ是x的方差。因为计算平均值的时候,中心点就是原点,所以μ等于0。据一维高斯函数,可以推导得到二维形式

有了这个函数 ,就可以计算每个点的权重了

权重矩阵

假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:

更远的点以此类推。

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下: 这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。

计算高斯模糊

有了权重矩阵,就可以计算高斯模糊的值了。假设现有9个像素点,灰度值(0-255)如下:

每个点乘以自己的权重值: 得到将这9个值加起来,就是中心点的高斯模糊的值。 对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。

高斯模糊矩阵示例表

这是一个计算 σ = 0.84089642 的高斯分布生成的示例矩阵。注意中心元素 [4,4]] 处有最大值,随着距离中心越远数值对称地减小。

注意中心处的 0.22508352 比 3σ 外的 0.00019117 大 1177 倍。

源码实现

package cn.zju.edu.liuxing;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;
/**
* 简单高斯模糊算法
*
* @param args
* @throws IOException [参数说明]
*
* @return void [返回类型说明]
* @exception throws [违例类型] [违例说明]
* @see [类、类#方法、类#成员]
*/
public class GaussianBlur {
    public static void main(String[] args) throws IOException {
        BufferedImage img = ImageIO.read(new File("./a.jpg")); //将这个图片拷贝到你项目根目录下
        System.out.println(img);
        int height = img.getHeight();
        int width = img.getWidth();
        int[][] martrix = new int[3][3];
        int[] values = new int[9];
        for (int i = 0; i < width; i++)
            for (int j = 0; j < height; j++) {
                readPixel(img, i, j, values);
                fillMatrix(martrix, values);
                img.setRGB(i, j, avgMatrix(martrix));
            }
        ImageIO.write(img, "jpeg", new File("./test.jpg"));
    }

    private static void readPixel(BufferedImage img, int x, int y, int[] pixels) {
        int xStart = x - 1;
        int yStart = y - 1;
        int current = 0;
        for (int i = xStart; i < 3 + xStart; i++)
            for (int j = yStart; j < 3 + yStart; j++) {
                int tx = i;
                if (tx < 0) {
                    tx = -tx;

                } else if (tx >= img.getWidth()) {
                    tx = x;
                }
                int ty = j;
                if (ty < 0) {
                    ty = -ty;
                } else if (ty >= img.getHeight()) {
                    ty = y;
                }
                pixels[current++] = img.getRGB(tx, ty);

            }
    }

    private static void fillMatrix(int[][] matrix, int[] values) {
        int filled = 0;
        for (int i = 0; i < matrix.length; i++) {
            int[] x = matrix[i];
            for (int j = 0; j < x.length; j++) {
                x[j] = values[filled++];
            }
        }
    }

    private static int avgMatrix(int[][] matrix) {
        int r = 0;
        int g = 0;
        int b = 0;
        for (int i = 0; i < matrix.length; i++) {
            int[] x = matrix[i];
            for (int j = 0; j < x.length; j++) {
                if (j == 1) {
                    continue;
                }
                Color c = new Color(x[j]);
                r += c.getRed();
                g += c.getGreen();
                b += c.getBlue();
            }
        }
        return new Color(r / 8, g / 8, b / 8).getRGB();

    }
}

运行结果

原图片

高斯模糊化后的图片

程序源码下载

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI派

手把手教你使用sklearn快速入门机器学习

sklearn(scikit-learn)是一个非常优秀的Python库,它封装了机器学习中常用的算法,包括监督学习、非监督学习等。它有以下几个特点:

8376
来自专栏机器学习算法原理与实践

BIRCH聚类算法原理

    在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理。这里我们再来看看另外一种常见的聚类算法BIRC...

701
来自专栏机器之心

专栏 | 监督&amp;强化学习模型在金融市场的应用

2474
来自专栏智能算法

多目标模板匹配

一. 模板匹配 模板匹配是数字图像处理的重要组成部分之一。把不同传感器或同一传感器在不同时间、不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已...

3025
来自专栏用户2442861的专栏

图像卷积与滤波的一些知识点

之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。

502
来自专栏机器学习算法与Python学习

扩展 | 3D 计算机视觉简介

随着 AR / VR 技术和自动驾驶汽车技术的发展,3D 视觉问题变得越来越重要,它提供了比 2D 更丰富的信息。本文将介绍两种用于 3D 场景分析的基本深度学...

432
来自专栏量化投资与机器学习

【深度】监督&强化学习算法在A股中的应用

2684
来自专栏深度学习自然语言处理

一文轻松搞懂-条件随机场CRF

根据实验室师兄,师姐讲的条件随机场CRF,我根据我的理解来总结下。有什么疑问的尽管在评论里指出,我们共同探讨 ? 总说 CRF(Conditional Rand...

31910
来自专栏深度学习那些事儿

一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解

这篇文章介绍<Is the deconvolution layer the same as a convolutional layer?>论文中提出的一种结合上...

2329
来自专栏机器之心

学界 | 谷歌论文新突破:通过辅助损失提升RNN学习长期依赖关系的能力

选自arXiv 机器之心编译 参与:李诗萌、黄小天 本文提出了一种简单的方法,通过在原始函数中加入辅助损失改善 RNN 捕捉长期依赖关系的能力,并在各种设置下评...

3425

扫码关注云+社区