前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ARKit 进阶:材质

ARKit 进阶:材质

原创
作者头像
郭艺帆
修改2017-09-27 09:29:41
3.2K0
修改2017-09-27 09:29:41
举报
文章被收录于专栏:郭艺帆的专栏郭艺帆的专栏

Scenekit lights and materials

光照与材质,是决定3D世界中的模型如何渲染的关键参数。许多时候模型的渲染对与不对,往往只是一种视觉的感受。由于不是测试驱动的,所以多数情况下,考验的不是你的逻辑,而是不断调试到理想的效果。熟悉光照与材质的着色方式,能够快速定位与解决问题。

Materials

材质指定了引擎如何在渲染阶段对几何体的每个像素着色。 SceneKit 中,每个SCNMaterial有八个决定视觉感官的属性(SCNMaterialProperty),其实就是3D建模时的光照贴图,当然每个属性也可以设置成纯色。SCNMaterial是可以复用的,但是要更改时,如果不想影响到其他模型,最好先复制一份。

Order of materials

有人对 SceneKit 的每个几何体都可以拥有一组材质不理解。他们是用来对几何体子元素着色的。如果几何体的子元素与材质数量对应,那么二者的索引是一一对应的。这里的子元素,一般就是引擎根据几何体顶点算出的多边形面。

例如有一个box,那么显然它是由6个多边形面,如果 box.materials 有6个材质,那么每个面就应用对应的材质。几何体的子元素引用顺序是固定的,对于这个box,多边形引用顺序是 front -> right -> back -> left -> top -> bottom。如果我们需要这个box只有顶面与底面显示,其他面隐藏,就可以这么设置:

代码语言:javascript
复制
self.boxGeometry.materials = @[transparentMaterial, transparentMaterial, 
transparentMaterial, transparentMaterial, topMaterial, bottomMaterial];

如果材质与子元素的数量不匹配,那么按照求余的方式去映射。

代码语言:javascript
复制
elements[index] <-> materials[index % numOfMaterial]

Appearance of Material

材质的表现由它的视觉属性决定,它们都是SCNMaterialProperty对象。SceneKit在渲染场景时,就是依据视觉属性与光照来决定最终的像素颜色。

Material property

材质所拥有的一组SCNMaterialProperty,被称为视觉属性,它们决定了材质“长什么样”。SCNMaterialProperty.content可以是纯色(相当于提供纯色纹理)也可以是纹理, 或者数字(主要用于 roughness 等 physicallyBased 模式的属性)。当内容是纹理时,SceneKit会采用纹理映射的方式采样相应的点作为材质属性。 纹理的读取源有以下四种:

  1. UIImage
  2. 全景格式的图像,如cube images(六张图像)
  3. CALayer
  4. SpriteKit scene
  5. SKTexture, MDLTexture, MTLTexture, GLKTextureInfo

SceneKit cannot use a layer that is already being displayed elsewhere (for example, the backing layer of a UIView object).

在使用CALayer作为内容时,如果是UIView.layer并且该UIView已经添加到其他层级中,那么内容会为空。

visual properties

当渲染材质时,由材质的光照模型lightModel确定要用到的视觉属性(diffuse/specular/normal),再配合场景中的光照,计算出每个点的颜色。

  • diffuse

diffuse 指定了材质对光照的漫反射。人眼看到物体,实际上人眼接收到物体的漫反射光。所以diffuse实际上是物理的基本样貌,任何光照模型都会用到diffuse这个最基本属性。

图:diffuse

  • ambient

ambient指定了材质对环境光的漫反射。一般情况下,diffuse已经包含环境光与方向光的漫反射,当locksAmbientWithDiffuse为NO时,ambient才会生效。这个属性只有在想突出环境光的情况下才会用到,一般diffuse已经足够,且效率更高。

图:ambient

  • specular

specular指定了材质的镜面反射,,用来表现材质的光滑程度。这个很好理解,漫反射是对各个方向的反射光,而镜面反射的角度一般不超过90度,角度越小看着越光滑。不管是 phong 还是 blinn-phong 光照模型,镜面反射都与材质的shininess相关, shinness越大,反射效果对比度越高,类似玻璃反射。

specular map 的亮度与材质的光滑程度成正比,specualr默认是纯黑色,即全粗糙表面。

图:specular

  • normal

normal指定了材质表面每个点的法线方向,在处理光照时,会根据normal计算阴影。

在光滑的表面,normal提供了一种假的几何凸起,而不用去增加几何复杂度。在 normal map 时,normal纹理的 R, G, B, 就是材质对应点法向量的X, Y, Z。当normal是纯色时,normal map 会自动失效。

图: normal

  • reflective

relective指定了材质对周围环境的反射。例如在树林里和在房间里,材质表面的反射效果应该是不同的,树林的环境下材质会泛绿。relective就用来做这件事,只需要将relective.content赋值为周围环境的图像。

图:reflective

  • emission

emission指定了材质表面发光(亮度较高)的位置。emission并不能让材质发光,只不过在计算光照是,emission 纹理中较亮的点不会参与到光照计算中,使这些点在阴暗的环境下显得更亮一些。emission默认是纯黑色,相当于提供了纯黑的纹理,emission无效。

图:emission

  • transparent

transparent指定了材质表面每个点的透明度。不同于transparency控制整个材质的透明度,transparent精准地控制每个点,其透明度等于 transparent 纹理的像素点 alpha 值。

图:transparent

  • multiply

multiply的内容,会在材质渲染完成之后,叠加在材质之上。multiply默认无效,内容是纯白色。

图: multiply

  • ambientOcclusion

ambientOcclusion,环境光遮蔽是一项用于提高模型细节的技术。由于环境光是不产生阴影的,引擎只会渲染方向光的阴影,这使得细节比较复杂的模型表现是真。传统的环境光是依靠射线追踪实现的,由于要处理每一个点,这种技术非常耗时。对于静态的模型,我们可以设置已经计算好的环境光遮蔽图,这样既能够有良好的细节,又不会造成大的性能损耗。

图:ambient occlusion

  • Physically based properties

以下几个属性,只有 physicallyBased 光照模型下的材质才有用,它们的效果比传统的光照模型更真实,值得多多尝试。

  • selfIllumination

selfIllumination 能会覆盖物体的亮度计算结果, 能让材质自己定义表面的亮度。在昏暗的环境下,模型由于不在光照范围可能会模糊不清,这时使用selfIllumination可以调节模型的亮度。

  • metalness

metalness 顾名思义,用来模拟材质表面的金属感。metalness 纹理的亮度决定材质的金属感,越亮越像金属。在设置 SCNScene.lightingEnvironment 后,引擎会根据真实的反射、折射参数去模拟金属表面的反光,效果很棒。

图:metalness

  • roughness roughness 与 specular 相似,用来表现模型表面的光滑程度。roughness 的计算规则是模拟真实世界的物理参数,与specular相比少了一些塑料感。roughness 纹理的亮度决定越粗糙,越亮越粗糙。

Light model of material

材质的光照模型,决定光照如何参与到材质的着色计算中。对于没有特殊需要的模型,SceneKit team 推荐使用physicallyBased,它能根据实时的场景变化渲染出更加真实的效果。

SceneKit支持五种光照模型:

1. constant 在计算模型表面的颜色时,只考虑环境光。在我们不需要模型的self-shadows时,可以将模型设置成constant model。相关问题

2. physicallyBased 根据真实世界的光照与材质效果,渲染模型表面。physicallyBased 的算法对于lighting environment的反射效果非常好,尤其是金属材质能以假乱真。 physicallyBased 主要根据材质的 diffuse ,roughness, metalness ,ambientOcclusion来计算着色。

3. lambert 根据lambert算法渲染模型表面,只考虑环境光与方向光在模型表面产生的漫反射。

代码语言:javascript
复制
color = ambient * al + diffuse * max(0, dot(N, L))

算法的公式就是将两种不同光的漫反射效果相加,lambert 主要根据材质的diffuse与ambient来计算着色。

4. phong 在计算Lambert漫反射的基础上,加上了用phong算法计算的镜面反射。

代码语言:javascript
复制
color = ambient * al + diffuse * max(0, dot(N, L)) + specular * pow(max(0, dot(R, E)), shininess)

公式的最后一项就是phong算法计算的镜面反射。phong 主要根据材质的diffuse与ambient, specular, shininess来计算着色。

5. blinn 在计算Lambert漫反射的基础上,加上了用blinn-phong算法计算的镜面反射。blinn-phong 的镜面反射光过渡更平滑,效果更真实,也是大多数渲染管线的默认光照模型。

代码语言:javascript
复制
color = ambient * al + diffuse * max(0, dot(N, L)) + specular * pow(max(0, dot(H, N)), shininess)

blinn 依据的材质与 phong 一样,只有计算参数不同。

Configuration of materials

除了设置材质的视觉属性和光照模型,我们还需要确定材质渲染到场景中的规则。比较常用的有以下几个:

transparency & transparencyMode transparencyMode 为 aOne 时,SceneKit 提取 transparent 纹理的alpha通道值作为透明信息。 为 rgbZero 时,提取transparent 纹理的亮度信息作为透明信息。 对于材质上的每一个点,SceneKit通过将transparency与transparent纹理映射点的透明信息相乘,获得最终的像素透明度。transparency控制材质整体的透明度,类似的效果也可以通过控制SCNNode.opacity来获得。

blendMode blendMode指定了材质的像素点在渲染阶段是如何与背景混合的。默认 SCNBlendModeAlpha 模式依据各个混合像素点的alpha值,来确定最终颜色的透明度。比较有用的是SCNBlendModeAdd模式,它指定在混合时,将各个混合像素的颜色相加,这会造成材质的一种半透明感。

writesToDepthBuffer & readsFromDepthBuffer SceneKit 在渲染每个像素点时,会比较像素的深度信息,若在同一位置有多个像素重合,那么只渲染离摄像机最近的那个。深度缓冲技术依靠深度缓冲寄存器,比传统的画家算法要高效很多。这篇文章介绍的很不错

writesToDepthBuffer与readsFromDepthBuffer,前者影响其他物体的绘制,后者影响自己的绘制,相互配合能解决一些比较棘手的问题,如绘制玩家数据时,它应该始终在最上层,所以不用读取深度缓冲。

在某些情况下,也可以用来尝试解决深度冲突问题

最后

材质是决定模型表现最关键的因素,同时也是设计师与程序员能够直接对接的环节。熟练掌握3D渲染的材质相关知识,不仅能沟通起来事半功倍,也能轻度参与到模型的视觉调整中,毕竟看起来舒服的东西才让人更有动力参与。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Scenekit lights and materials
  • Materials
  • Order of materials
  • Appearance of Material
  • Material property
  • Light model of material
  • Configuration of materials
  • 最后
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档