机器学习概念总结笔记(四)

作者:许敏

系列推荐

机器学习概念总结笔记(一) 机器学习概念总结笔记(二) 机器学习概念总结笔记(三)

21)KMeans

聚类分析是一种静态数据分析方法,常被用于机器学习,模式识别,数据挖掘等领域。通常认为,聚类是一种无监督式的机器学习方法,它的过程是这样的:在未知样本类别的情况下,通过计算样本彼此间的距离(欧式距离,马式距离,汉明距离,余弦距离等)来估计样本所属类别。从结构性来划分,聚类方法分为自上而下和自下而上两种方法,前者的算法是先把所有样本视为一类,然后不断从这个大类中分离出小类,直到不能再分为止;后者则相反,首先所有样本自成一类,然后不断两两合并,直到最终形成几个大类。

常用的聚类方法主要有以下四种:1)Connectivity based clustering(如hierarchical clustering 层次聚类法)。 2)Centroid-based clustering(如kmeans)。 3)Distribution-based clustering; 4)Density-based clustering。

Kmeans是最经典的聚类算法。算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

假设要把样本集分为c个类别,算法描述如下:(1)适当选择c个类的初始中心;(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;(3)利用均值等方法更新该类的中心值;(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

Kmeans聚类是一种自下而上的聚类方法,它的优点是简单、速度快;缺点是聚类结果与初始中心的选择有关系,且必须提供聚类的数目。Kmeans的第二个缺点是致命的,因为在有些时候,我们不知道样本集将要聚成多少个类别,这种时候kmeans是不适合的,推荐使用hierarchical 或meanshift来聚类。第一个缺点可以通过多次聚类取最佳结果来解决。

22)混合高斯模型

高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。高斯模型常用于运动检测。 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种。

高斯混合模型(GMM),顾名思义,就是数据可以看作是从数个高斯分布中生成出来的。虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是 GMM是 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。

每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

其中,πk表示选中这个component部分的概率,我们也称其为加权系数。根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K 个 Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 πk,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。假设现在有 N 个数据点,我们认为这些数据点由某个GMM模型产生,现在我们要需要确定 πk,μk,σk 这些参数。很自然的,我们想到利用最大似然估计来确定这些参数,GMM的似然函数如下:

如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。

现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于

,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和

,得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

下面让我们来看一看 GMM 的 log-likelihood function :

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于K-means 的两步。

算法流程分为以下3步:1. 估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 x_i 来说,它由第 k 个 Component 生成的概率为

  1. 通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值。
  1. 重复迭代前面两步,直到似然函数的值收敛为止。

23)LDA

传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。

举个例子,有两个句子分别如下:

“乔布斯离我们而去了。” “苹果价格会不会降?”

可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA就是其中一种比较有效的模型。

在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率。形象来说,主题就是一个桶,里面装了出现概率较高的单词,这些单词与这个主题有很强的相关性。

怎样才能生成主题?对文章的主题应该怎么分析?这是主题模型要解决的问题。首先,可以用生成模型来看文档和主题这两件事。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。那么,如果我们要生成一篇文档,它里面的每个词语出现的概率为:

这个概率公式可以用矩阵表示:

其中”文档-词语”矩阵表示每个文档中每个单词的词频,即出现的概率;”主题-词语”矩阵表示每个主题中每个单词的出现概率;”文档-主题”矩阵表示每个文档中每个主题出现的概率。给定一系列文档,通过对文档进行分词,计算各个文档中每个单词的词频就可以得到左边这边”文档-词语”矩阵。主题模型就是通过左边这个矩阵进行训练,学习出右边两个矩阵。

主题模型有两种:pLSA(ProbabilisticLatent Semantic Analysis)和LDA(Latent Dirichlet Allocation)。

LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。

对于语料库中的每篇文档,LDA定义了如下生成过程(generativeprocess):1.对每一篇文档,从主题分布中抽取一个主题;2.从上述被抽到的主题所对应的单词分布中抽取一个单词;3.重复上述过程直至遍历文档中的每一个单词。语料库中的每一篇文档与T(通过反复试验等方法事先给定)个主题的一个多项分布 (multinomialdistribution)相对应,将该多项分布记为θ。每个主题又与词汇表(vocabulary)中的V个单词的一个多项分布相对应,将这个多项分布记为φ。

24)PLSA

Latent Semantic Analysis (LSA)标准潜在语义分析,LSA的基本思想就是,将document从稀疏的高维Vocabulary空间映射到一个低维的向量空间,我们称之为隐含语义空间(Latent Semantic Space).

如何得到这个低维空间呢,和PCA采用特征值分解的思想类似,作者采用了奇异值分解(Singular Value Decomposition)的方式来求解Latent Semantic Space。LSA的优点在于:1)低维空间表示可以刻画同义词,同义词会对应着相同或相似的主题;2)降维可去除部分噪声,是特征更鲁棒;3)充分利用冗余数据;4)无监督/完全自动化;5)与语言无关;LSA的不足在于:1)没有刻画term出现次数的概率模型;2)无法解决多义词的问题;3)SVD的优化目标基于L-2 norm 或者是 Frobenius Norm的,这相当于隐含了对数据的高斯噪声假设。而term出现的次数是非负的,这明显不符合Gaussian假设,而更接近Multi-nomial分布;4)对于count vectors 而言,欧式距离表达是不合适的(重建时会产生负数);5)特征向量的方向没有对应的物理解释;6)SVD的计算复杂度很高,而且当有新的文档来到时,若要更新模型需重新训练;7)维数的选择是ad-hoc的;

pLSA(ProbabilisticLatent Semantic Analysis)概率潜在语义分析是基于双模式和共现的数据分析方法延伸的经典的统计学方法。概率潜在语义分析应用于信息检索,过滤,自然语言处理,文本的机器学习或者其他相关领域。概率潜在语义分析与标准潜在语义分析的不同是,标准潜在语义分析是以共现表(就是共现的矩阵)的奇异值分解的形式表现的,而概率潜在语义分析却是基于派生自LCM的混合矩阵分解。考虑到word和doc共现形式,概率潜在语义分析基于多项式分布和条件分布的混合来建模共现的概率。所谓共现其实就是W和D的一个矩阵,所谓双模式就是在W和D上同时进行考虑。

25)Apriori

从大规模数据集中寻找物品间的隐含关系被称作**关联分析(association analysis)或者关联规则学习(association rule learning)。

关联分析是在大规模数据集中寻找有趣关系的任务。这些关系可以有两种形式:1)频繁项集;2)关联规则。频繁项集(frequent item sets)是经常出现在一块儿的物品的集合,关联规则(association rules)暗示两种物品之间可能存在很强的关系。

我们用支持度和可信度来度量这些有趣的关系。一个项集的支持度(support)被定义数据集中包含该项集的记录所占的比例。如上图中,{豆奶}的支持度为4/5,{豆奶,尿布}的支持度为3/5。支持度是针对项集来说的,因此可以定义一个最小支持度,而只保留满足最小值尺度的项集。可信度或置信度(confidence)是针对关联规则来定义的。规则{尿布}➞{啤酒}的可信度被定义为"支持度({尿布,啤酒})/支持度({尿布})",由于{尿布,啤酒}的支持度为3/5,尿布的支持度为4/5,所以"尿布➞啤酒"的可信度为3/4。这意味着对于包含"尿布"的所有记录,我们的规则对其中75%的记录都适用。

假设我们有一家经营着4种商品(商品0,商品1,商品2和商品3)的杂货店,2图显示了所有商品之间所有的可能组合:

对于单个项集的支持度,我们可以通过遍历每条记录并检查该记录是否包含该项集来计算。对于包含N中物品的数据集共有2 N −1种项集组合,重复上述计算过程是不现实的。

研究人员发现一种所谓的Apriori原理,可以帮助我们减少计算量。Apriori原理是说如果某个项集是频繁的,那么它的所有子集也是频繁的。更常用的是它的逆否命题,即如果一个项集是非频繁的,那么它的所有超集也是非频繁的。

在图3中,已知阴影项集{2,3}是非频繁的。利用这个知识,我们就知道项集{0,2,3},{1,2,3}以及{0,1,2,3}也是非频繁的。也就是说,一旦计算出了{2,3}的支持度,知道它是非频繁的后,就可以紧接着排除{0,2,3}、{1,2,3}和{0,1,2,3}。

关联分析的目标包括两项:发现频繁项集和发现关联规则。首先需要找到频繁项集,然后才能获得关联规则(正如前文所讲,计算关联规则的可信度需要用到频繁项集的支持度)。

Apriori算法是发现频繁项集的一种方法。Apriori算法的两个输入参数分别是最小支持度和数据集。该算法首先会生成所有单个元素的项集列表。接着扫描数据集来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后,对剩下来的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行直到所有项集都被去掉。

26)FP-Growth

FP-growth算法基于Apriori构建,但采用了高级的数据结构减少扫描次数,大大加快了算法速度。FP-growth算法只需要对数据库进行两次扫描,而Apriori算法对于每个潜在的频繁项集都会扫描数据集判定给定模式是否频繁,因此FP-growth算法的速度要比Apriori算法快。

FP-growth算法发现频繁项集的基本过程如下:1)构建FP树;2)从FP树中挖掘频繁项集。FP-growth算法优点:一般要快于Apriori。缺点:实现比较困难,在某些数据集上性能会下降。适用数据类型:离散型数据。

构建FP树的过程如下:

输入:数据集、最小值尺度

输出:FP树、头指针表

  1. 遍历数据集,统计各元素项出现次数,创建头指针表
  2. 移除头指针表中不满足最小值尺度的元素项
  3. 第二次遍历数据集,创建FP树。对每个数据集中的项集: 3.1 初始化空FP树 3.2 对每个项集进行过滤和重排序 3.3 使用这个项集更新FP树,从FP树的根节点开始:

3.3.1 如果当前项集的第一个元素项存在于FP树当前节点的子节点中,则更新这个子节点的计数值

3.3.2 否则,创建新的子节点,更新头指针表

3.3.3 对当前项集的其余元素项和当前元素项的对应子节点递归3.3的过程

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与Python学习

初步了解支持向量机(SVM)-1

从今天开始整理一些关于支持向量机-Support Vector Machine 的相关知识,大约发6-8篇的博客,敬请关注~欢迎推荐~ 好了,由...

39711
来自专栏云时之间

EM算法学习(番外篇):HMM的参数估计

在上一篇文章中留下了个尾巴是关于EM算法在HMM隐马尔可夫模型的参数估计拓展上的应用.在学习EM算法以后,我们再去学习HMM的Baum-Weich算法就会相对的...

35111
来自专栏云时之间

EM算法学习(一)

EM算法是英文expectation-maximization算法的英文简写,翻译过来就是期望最大化算法,其实是一种根据求参的极大似然估计的一种迭代的优化策略,...

3288
来自专栏机器之心

机器之心GitHub项目:GAN完整理论推导与实现,Perfect!

机器之心原创 作者:蒋思源 本文是机器之心第二个 GitHub 实现项目,上一个 GitHub 实现项目为从头开始构建卷积神经网络。在本文中,我们将从原论文出发...

3839
来自专栏人工智能LeadAI

TensorFlow从0到1丨 第六篇:解锁梯度下降算法

上一篇 5 TF轻松搞定线性回归,知道了模型参数训练的方向是由梯度下降算法指导的,并使用了TF的封装tf.train.GradientDescentOptimi...

2999
来自专栏磐创AI技术团队的专栏

深度学习中的正则化技术概述(附Python+keras实现代码)

701
来自专栏专知

【干货】一种直观的方法认识梯度下降

【导读】本文是深度学习专家Thalles Silva分享的一篇技术博客,主要讲解机器学习算法中的梯度下降。首先从形象的角度介绍梯度下降:梯度、偏导数等。然后,根...

3706
来自专栏企鹅号快讯

一文帮你理解什么是深层置信网络

翻译 | 林椿眄 编辑 |SuiSui 前言 随着机器学习的进步和深度学习的出现,一些工具和图形表示被逐渐用来关联大量的数据。深度置信网络(Deep Belie...

2567
来自专栏人工智能LeadAI

零基础入门深度学习 | 第五章: 循环神经网络

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习这个超热的技术,会不会感...

4117
来自专栏机器学习算法与Python学习

干货 | 受限玻尔兹曼机基础教程

定义与结构 受限玻尔兹曼机(RBM)由Geoff Hinton发明,是一种用于降维、分类、回归、协同过滤、特征学习和主题建模的算法。 下载pdf,请后台回复关键...

47313

扫码关注云+社区