2017 年首份中美数据科学对比报告,美国数据工作者年薪中位数高达 11 万美金

导语

最新消息,Kaggle最近对机器学习及数据科学领域进行了全行业深度调查,调查共收到超过 16,000 份回复,受访内容包括最受欢迎的编程语言是什么,不同国家数据科学家的平均年龄是什么,不同国家的平均年薪是多少等。

不过,因为中国的数据收集不够全面,而美国数据也同样存在清洗不够的情况,所以,以下数据仅供参考。希望Kaggle下次能将数据做得更透彻更深入更全面。

以下为AI科技大本营对其进行的数据整理,并从中美数据科学和机器学习对比的角度呈现如下:

中美数据工作者概况对比

年龄

从世界范围来看,本次调查对象的平均年龄大约 30 岁,当然,这个值在各个国家之间有变动。

以下为中美调查对象的年龄对比:

中国

在中国,机器学习从业者年龄的中位数是25岁,从业者集中在20-30岁年龄段。这可能反映出中国从业者人群的大体分布,但鉴于Kaggle所统计到的数据量,其中的细节还值得商榷一番。

美国

在美国,机器学习从业者年龄的中位数是32岁,以20-30岁年龄段的人数最多。但令人意外的是,我们在图表中看到一位年满100岁的大牛,还有几位年龄接近0岁的小朋友。我们尚不清楚Kaggle这里数据清洗的细节,不过这几位大牛果真存在的话,务请联系AI科技大本营,我们对您的存在非常感兴趣。

中美就业状况对比

中国全职工作者占53.%%,美国则高达70.9%

中国

美国

中美数据科学具体职位对比图

数据科学领域可涵盖的工作非常多,包括机器学习工程师,数据分析师,数据科学家,软件开发人员,数据挖掘人员等。以下为中美在数据科学领域的对比图:

中国

美国

年薪

从全球来看,数据科学人员的年薪中位数为$55,441。在中国,数据科学家的年薪中位数为$29,835。美国则高达$110,000

中国全职年薪

美国全职年薪

最高学历

通常来讲,数据科学从业者中最普遍的学历是硕士,但一般来讲,博士学位能拿到($150K - $200K 和 $200k+)的高薪。

就中国而言,硕士学位在总体占比为40.5%,博士仅11.2%,本科学位从业人数则高达39.5%,与硕士从业人数持平。

而美国,硕士学位只有44.5%,博士学位高达20.7%,本科从业者占比也高达26.5%。

总的来说,美国博士学位高达20.7%,从占比上来看,接近中国的两倍(中国为11.2%)。

中国

美国

数据科学家到底是怎么工作的?

工作中使用什么样的方法?

Logistic回归是除了军事和国安领域外,最常用的数据科学研究方法。在军事和国防安全领域,神经网络使用地更多。

所有国家整体数据

数据工作中使用最多的工具语言是?

总体来说,Python是数据工作者使用最多的语言。同时,数据研究人员对R语言的忠诚度也很高。

所有国家整体数据

工作中使用什么类型的数据?

关系型数据市是最常用的数据类型。但在学术研究者和国防安全领域则更亲睐文本和图像。

所有国家整体数据

工作中使用什么样的代码共享和托管方式?

大部分数据工作者使用Git分享代码。不过,大公司的工作者更喜欢将代码保留在本地,并将代码用邮件分享。初创公司则用更快捷的云分享方式。

所有国家整体数据

工作中遇到了什么样的障碍?

脏数据(Dirty Data)是最大障碍。机器有侧重,但理解不同算法的能力不够也是一大困扰数据工作者的障碍。缺乏有效管理和资金支持是数据工作者面临的两大外在困境。

数据科学新手如何在这个行业崭露头角?

根据你的经验,你会向数据科学新手推荐使用哪种语言?

这个因人而异。在Python和R两大使用群体最大的语言中,大部分人觉得Python更值得被推荐。

你从哪里获得数据科学的学习资源?

数据科学是个变化极快的领域,业内人员需要不断更新知识体系,才可以在业内保持一定地位,不被时代淘汰。Stack Overflow Q&A,Conferences,和Podcasts是已从业者经常使用的学习平台。发布新软件时,一定记住阅读官方使用指南,并推荐去YouTube观看使用视频。

从哪里获得开放数据集?

没有数据就没有数据科学!当涉及到一些数据科学技巧时,知道如何找到练习所用的干净的开源数据集和项目非常重要。越来越多人开始使用我们的数据集聚合器(https://www.kaggle.com/datasets ).

通过什么渠道获得工作?

根据数据科学领域过来人的经验,以下这些方法可能会比在公司网站,招聘网站上投递简历更高效,比如通过建立自己在这个行业的关系网络。

以上内容来自于kaggle网站。

本来来源于 AI科技大本营 微信公众号

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

千万别踏进这些陷阱!解密数据的8个把戏

上大学时,我和另一个姑娘(某理科大神)经常搭伙做饭。有天我俩一起去超市买油,站在琳琅满目的货架前,我直接拎起一瓶,冲她叫:“就拿这瓶吧,最便宜!”姑娘白了我一眼...

2516
来自专栏阿尔法go

数据挖掘——推荐一些有用的学习网站

最近,很多人问学习数据挖掘有哪些网站和公众号可以推荐的,我结合自己的学习经验和知乎大神上的推荐,现在给大家归纳一下,希望能对大家的学习有帮助。 1.公开的数据集...

3427
来自专栏大数据文摘

大数据时代,应用统计学专业成考研香饽饽

4547
来自专栏CDA数据分析师

12个数据科学面试必问问题

原作者 Venkat Nagaswamy 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 聘用到出色的数据科学家至关重要,但这并非易事...

2198
来自专栏AI科技大本营的专栏

2017年首份中美数据科学对比报告,Python受欢迎度排名第一,美国数据工作者年薪中位数高达11万美金

最新消息,Kaggle最近对机器学习及数据科学领域进行了全行业深度调查,调查共收到超过 16,000 份回复,受访内容包括最受欢迎的编程语言是什么,不同国家数据...

3467
来自专栏程序员笔记

20161116笔记:赢家诅咒,技能迁移

1303
来自专栏CSDN技术头条

编程语言寿命预测

摘要:林迪效应可以简单地概括为“越活越年轻”。本文作者将林迪效应应用在编程语言之上,以预测编程语言的寿命。以下是译文。 林迪效应指出,经历的时间越长则未来生存的...

18910
来自专栏ThoughtWorks

TW洞见 | 估算的目的

我第一次与敏捷软件开发的邂逅,是在极限编程刚刚兴起时,跟Kent Beck一起工作的经历。其中让我印象深刻的事情之一,就是我们如何做计划的方式。这里面包括一种估...

35411
来自专栏企鹅号快讯

案例:能否借助AI破译婴儿哭声?

作者:于长弘 全文共 4646 字 14 图,阅读需要 10 分钟 ———— / BEGIN / ———— 哭闹是宝宝表达情感和寻求帮助的主要方式,也是一种健康...

2188
来自专栏PPV课数据科学社区

【每天一个数据分析师】面对毫无基础的业务人员,好的分析师解释逻辑,而不是细节

论坛君 “每天一个数据分析师”在第七期有幸采访到谢宇先生,他是中国联通广西分公司的大数据负责人,有超过7年的电信行业数据挖掘经验,目前主要负责大数据应用规划、基...

3467

扫码关注云+社区