专栏首页利炳根的专栏学习笔记DL001 : 数学符号、深度学习的概念
原创

学习笔记DL001 : 数学符号、深度学习的概念

数学符号。

数和数组。𝑎,标量(整数或实数)。𝒂,向量。𝑨,矩阵。𝗔,张量。𝑰𝑛,𝑛行𝑛列单位矩阵。𝑰,维度蕴含上下文单位矩阵。𝑒⁽ⁿ⁾,标准基向量0,…,0,10,…,0,其中索引n处值为1。diag(𝒂),对象方阵,其中对象元素由𝒂给定。a,标量随机变量。𝐚,向量随机变量。𝐀,矩阵随机变量。

集合和图。𝔸,集合。ℝ,实数集。{0,1},包含0和1集合。{0,1,…,𝑛},包含0和𝑛之间所有整数的集合。𝑎,𝑏,包含𝑎和𝑏的实数区间。(𝑎,𝑏],不包含𝑎但包含𝑏的实数区间。𝔸\𝔹,差集,即其元素包含于𝔸但不包含于𝔹。𝒢,图。𝑃𝑎𝑔(𝑥𝑖),图𝒢中𝑥𝑖的父节点。

索引。𝑎𝑖,向量𝑎的第𝑖个元素,其中索引从1开始。𝑎₋𝑖,除了第𝑖个元素,𝑎的所有元素。𝐴𝑖,𝑗,矩阵𝐴的𝑖,𝑗元素。𝐴𝑖,:,矩阵𝐴的第𝑖行。𝐴:,𝑖,矩阵𝐴的第𝑖列。𝘼𝑖,𝑗,k,3维张量𝘼的(𝑖,𝑗,𝑘)元素。𝘼:,:,𝑖,3维张量𝘼的2维切片。a𝑖,随机向量𝑎的第𝑖个元素。

线性代数操作。𝐴⫟,矩阵𝐴的转置。𝐴⁺,𝐴的Moore-Penrose伪造。𝐴⨀𝐵,𝐴和𝐵的逐元素乘积(Hadamard乘积)。𝑑𝑒𝑡(𝐴),𝐴的行列式。

微积分。𝑑𝑦/𝑑𝑥,y关于x的导数。∂𝑦/∂𝑥,y关于x的偏导。∇𝑥𝑦,y关于x的梯度。∇𝑿𝑦,y关于𝑿的矩阵导数。∇𝐗𝑦,y关于𝐗求导后的张量。∂𝑓/∂𝑥,𝑓:ℝⁿ->ℝⁿⁿ的Jacobian矩阵𝑱∈ℝ⁽m*n⁾。∇⁽𝟸⁾₍x₎𝑓(x)or𝑯(𝑓)(x),𝑓在点𝑥处的Hessian矩阵。∫𝑓(𝑥)𝑑𝑥,𝑥整个域上的定积分。∫𝕤𝑓(𝑥)𝑑𝑥,集合𝕊上关于𝑥定积分。

概率和信息论。a⊥b,a和b相互独立的随机变量。a⊥b|c,给定c后条件独立。P(a),离散变量上的概率分布。p(a),连续变量(或变量类型未指定时)上的概率分布。a~P,具有分布P的随机变量a。Ex~p𝑓(𝑥)or𝔼𝑓(𝑥),𝑓(𝑥)关于P(𝑥)的期望。Var(𝑓(𝑥)),𝑓(𝑥)在分布P(𝑥)下的方差。Cov(𝑓(𝑥),𝑔(𝑥)),𝑓(𝑥)和𝑔(𝑥)在分布P(𝑥)下的协方差。𝐻(𝑥),随机变量𝑥的香浓熵。𝐷𝐾𝐿(𝑃||𝑄),𝑃和𝑄的𝐾𝐿散度。𝑁(𝑥;𝛍,∑),均值为𝛍,协方差为∑,𝑥上的高斯分布。𝑓:𝔸->𝔹,定义域为𝔸值域为𝔹的函数𝑓。𝑓∘𝑔,𝑓和𝑔的组合。𝑓(𝑥:θ),由θ参数化,关于𝑥的函数(有时为简化表示,忽略θ,记为𝑓(𝑥))。log𝑥,𝑥的自然对数。σ(𝑥),Logistic sigmoid,1/(1+exp(-𝑥))。𝜁(𝑥),Softplus,log(1+exp(𝑥))。||𝑥||p,𝑥的L⁽p⁾范数。||𝑥||,𝑥的L⁽2⁾范数。𝑥⁺,𝑥的正数部分,max(0,𝑥)。1condition,如果条件为真则为1,否则为0。用函数𝑓,参数是一个标量,应用到一个向量、矩阵或张量:𝑓(𝑥)、𝑓(𝑋)或𝑓(𝖷)。表示逐元素将𝑓应用于数组。𝑪=σ(𝗫),对于所有合法的i、j和k,𝗖i,j,k=σ(𝗫i,j,k)。

数据集和分布。𝑃data,数据生成分布。𝑃train,由训练集定义的经验分布。𝕏,训练样本的集合。𝑥⁽𝑖⁾,数据集的第𝑖个样本(输入)。𝒴⁽𝑖⁾或𝓨⁽𝑖⁾,监督学习中与𝑥⁽𝑖⁾关联的目标。𝑿,𝑚 x 𝑛的矩阵,行𝑿𝑖,:为输入样本𝑥⁽𝑖⁾。

古希腊时期,神话人物皮格马利翁(Pygmalion)、代达罗斯(Daedalus)和赫淮斯托斯(Hephaestus)传说发明家。加拉蒂亚(Galatea)、塔洛斯(Talos)和潘多拉(Pandora)人生生命(Ovid and Martin,2004;Sparkes,1996;Tandy,1997)。

人类第一次构思可编程计算机,思考变智能(离造出第一计算机一百年)(Lovelace,1842)。人工智能(artificial intelligence,AI)众多实际应用、活跃研究课题领域,蓬勃发展。智能软件自动处理常规劳动、理解语音图像、帮助医学论断、支持基础科学研究。

早期,计算机相对简单问题迅速解决,形式化数学规则描述问题。挑战,很难形式化描述任务,如人说话、图中脸。解决方案,计算机从经验学习,根据层次化概念体系理解世界。概念通过相对简单概念关系定义。计算从经验获取知识,避免人类给计算机形式化指定知识。层次化概念让计算机构建简单概念学习复杂概念。概念建立在彼此之上的图,一张深(多层次)图。AI深度学习(deep learning)。

参考资料:

《深度学习》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵

    线性代数,面向连续数学,非离散数学。《The Matrix Cookbook》,Petersen and Pedersen,2006。Shilov(1977)。

    利炳根
  • 学习笔记 TF059 :自然语言处理、智能聊天机器人

    自然语言处理,语音处理、文本处理。语音识别(speech recognition),让计算机能够“听懂”人类语音,语音的文字信息“提取”。

    利炳根
  • 学习笔记CB007:分词、命名实体识别、词性标注、句法分析树

    概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况。给定观察序列X,某个特定标记序列Y概率,指数函数 exp(∑λt+∑μs)。符合最大熵原理。基...

    利炳根
  • 05 Spring框架 依赖注入(二)

    上一节我们讲了三种信息的注入,满足一个类的属性信息的注入,但是如果我们需要向一个实例中注入另一个实例呢?就像我们创建一个学生类,里边有:姓名,性别,年龄,成绩等...

    MindMrWang
  • 互联网+教育峰会举行 国家信息中心与腾讯战略签约

    国家信息中心与腾讯战略签约 2016年11月19日,由国家发改委、教育部、工信部、科技部、商务部、农业部、国家知识产权局、中科院、工程院、深圳市政府共同主办,国...

    腾讯高校合作
  • leetcode: 129. Sum Root to Leaf Numbers

    JNingWei
  • 记一次思否问答的问题思考:Vue为什么不能检测数组变动

    问题描述:Vue检测数据的变动是通过Object.defineProperty实现的,所以无法监听数组的添加操作是可以理解的,因为是在构造函数中就已经为所有属性...

    前端博客 : alili.tech
  • [译] 延迟加载 React Components (用 react.lazy 和 suspense)

    虽然在 React 16.8.1 中终于面世的 hooks 引人瞩目,但在去年发布的 16.6.0 版本里也包含了一个吸引人的新特性,可以让我们在不依赖第三方库...

    江米小枣
  • GitHub 上有个沙雕开发者,做了款斗图工具后火了...

    作为一个瞎扯淡重度患者,表情包是我保持长久战斗力的必备武器。没有表情包的聊天,是没有灵魂的。

    帅地
  • [Cake] 1. CI中的Cake

    在上一篇C#Make自动化构建-简介中,简单的介绍了下Cake的脚本如何编写以及通过Powershell在本地运行Cake脚本。本篇在此基础上,介绍下如何在CI...

    blackheart

扫码关注云+社区

领取腾讯云代金券