学习笔记DL002:AI、机器学习、表示学习、深度学习,第一次大衰退

AI早期成就,相对朴素形式化环境,不要求世界知识。如IBM深蓝(Deep Blue)国际象棋系统,1997,击败世界冠军Garry Kasparov(Hsu,2002)。国际象棋,简单领域,64个位置,严格限制方式移动32个棋子。可由简短、完全形式化规则列表描述,容易事先准备。抽象、形式化,是人类最困难脑力任务,但计算机最容易。早期打败人类最好象棋选手,最近识别对象、语音任务达到人类平均水平。日常生活需要世界巨量知识,主观、直观,很难形式化表达。计算机智能需要获取同样知识。关键挑战,非形式化知识传给计算机。

世界知识形式化语言硬编码(hard code)。逻辑揄规则自动理解形式化语言声明。人工智能知识库(knowledge base)。著名项目Cyc(Lenat and Guha,1989),一个推断引擎,一个CycL语言描述声明数据库。声明由人类监督者输入。设计足够复杂形式化规则精确描述世界(Linde,1992)。

AI系统需自己获取知识。原始数据提取模式,机器学习(machine learning)。解决现实世界知识问题,作为主观决策。逻辑回归(logistic regression)决定是否建议剖腹产(Mor-Yosef et al.,1990)。朴素贝叶斯(naive Bayes)区分垃圾电子邮件。简单机器学习算法性能依赖给定数据表示(representation)。需要人工提供信息特征,不能影响特征定义方式。表示依赖。数据集合结构化、智能索引,搜索速度指数加快。表示选择影响机器学习算法性能。先提取合适特征集,提供给简单机器学习算法。

机器学习发掘表示本身,不仅把表示映射输出。表示学习(representation learning)。表示学习算法发现好特征集效果比人工高。表示学习算法典型例子,自编码器(autoencoder)。编码器(encoder)函数和解码器(decoder)函数组合。编码器函数将输入数据转换不同表示,解码器函数将新表示转换为原来形式。输入数据经过编码器、解码器尽可能多保留信息,新表示有好特性,自编码器训练目标。实现不同特性,设计不同形式自编码器。设计特征、学习特征算法,分离解释观察数据变差因素(factors of variation)。因素指代影响不同来源,乘性组合,不能直接观察的量,影响可观测的量。为观察数据提供有用简化解释或推断原因,以概念形式存在人类思维。数据概念、抽象,帮助了解数据丰富多样性。多个变差因素同时影响观察数据。需要理清变差因素,忽略不关心因素。

深度学习(deep learning),通过其他简单表示表达复杂表示,解决表示学习核心问题。简单概念构建复杂概念。计算机难以理解原始感观输入数据含义。复杂映射分解系列嵌套简单映射(每个由模型不同层描述)。输入展示在可见层(visible layer),能观察到变量。一系列图像提取抽象特征隐藏层(hidden layer)。值不在数据给出。模型确定有利于解释观察数据关系的概念。图像是每个隐藏单元表示特征可视化。给定像素,第一层比较相邻像素亮度识别边缘。第二隐藏层搜索可识别角、扩展轮廓边集合。第三隐藏层找到轮廓、角特定集合检测特定对象整个部分。根据图像描述包含对象部分,识别图像存在对象。

典型例子,前馈深度网络、多层感知机(multilayer perceptron,MLP)。一组输入映射到输出值数学函数。多个简单函数复合。不同数学函数每次应用为输入提供新表示。学习数据正确表示。深度促使计算机学习一个多步骤计算机程序。每一层表示并行执行另一组指令后计算机存储器状态。更深网络按顺序执行更多指令。顺序指令,后面指令参考早期指令结果。表示存储状态信息,帮助国程序理解输入。度量模型深度,基于评估架构所需执行顺序指令数目。模型表示为给定输入后,计算对应输出流程图,最长路径为模型深度。相同函数被绘制为不同深度流程图,取决一个步骤的函数。概念关联图深度作模型深度。系统对简单概念理解,给出复杂概念信息,进一步精细化。深度学习研究模型更多学到功能或学到概念组合。深度学习将世界表示为嵌套层次概念体系(简单概念联系定义复杂概念,一般抽象概括到高级抽象表示)。

AI(知识库)->机器学习(逻辑回归)->表示学习(浅度自编码器)->深度学习(MLPs)。基于规则系统(输入->手工设计程序->输出)->经典机器学习(输入->手工设计特征->从特征映射->输出)->表示学习(输入->特征->从特征映射->输出)->深度学习(输入->简单特征->更抽象特征额外层->从特征映射->输出)。

深度学习适用领域,计算视觉、语音音频处理、自然语言处理、机器人技术、生物信息学化学、电子游戏、搜索引擎、网络广告、金融。

应用数学与机器学习基础->线性代数->概论、信息论、数值计算->机器学习基础->深度网络现代实践->深度前馈网络->正则化->优化->卷积神经网络->循环神经网络->实践方法论->应用->深度学习研究->线性因子模型->自编码器->表示学习->结构化概率模型->蒙特卡罗方法->配分函数->推断->深度生成模型。

深度学习历史趋势。深度学习历史悠久丰富。可用训练数据量增加,变得更加有用。针对深度学习计算机软硬件基础设施改善,模型规模增长。解决日益复杂应用,精度提高。

神经网络名称命运变迁。深度学习3次发展浪潮。20世纪40年代到60年代,控制论(cybernetics)。生物学习理论发展(McCulloch and Pitts, 1943; Hebb, 1949),第一个模型实现(感知机 Rosenblatt,1958),实现单个神经元训练。20世纪80年代到90年代,联结主义(connectionism),反向传播(Rumelhart et al.,1986a)训练一两个隐藏层神经网络。2006年,深度学习复兴(Hinton et al.,2006a;Bengio et al.,2007a;Ranzato et al.,2007a)。深度涫超越机器学习模型神经科学观点。学习多层次组合。前身神经科学简单线性模型。用一组n个输入x1,…,xn,与一个输出y相关联。学习一组权重w1,…,wn,计算输出f(x,w)=x1w1+…+xnwn。控制论。

McCulloch-Pitts神经元(McCulloch and Pitts,1943),脑功能早期模型。线性模型检验函数f(x,w)下负识别两种不同类别输入。模型权重正确设置使模型输出对应期望类别。权重由人工设定。20世纪50年代,感知机(Rosenblatt,1956,1958),第一个根据每个类别输入样本学习权重模型。同时期,自适应线性单元(adaptive linear element,ADALINE),简单返回函数f(x)值预测一个实数(Widrow and Hoff,1960),学习从数据预测这些数。调节ADALINE权重训练算法,随机梯度下降(stochastic gradient descent)。当今深度学习主要训练算法。

基于感知机和ADALINE使用函数f(x,w)模型为线性模型(linear model)。目前最广泛机器学习模型。无法学习异或(XOR)函数,f(0,1,w)=1, f(1,0,w)=1, f(1,1,w)=0, f(0,0,w)=0。批评者抵触受生物学启发的学习(Minsky and Papert,1969)。神经网络热潮第一次大衰退。

现在,神经科学是深度学习研究重要灵感来源,不再是主要指导。没有足大脑信息作指导。大脑实际使用算法深刻理解,需要同时监测数千相连神经元活动。大脑最简单、最深入研究部分还没有理解(Olshausen and Field,2005)。

参考资料:

《深度学习》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

机器学习基础与实践(一)——数据清洗

想写这个系列很久了,最近刚好项目结束了闲下来有点时间,于是决定把之前学过的东西做个总结。之前看过一些机器学习方面的书,每本书都各有侧重点,机器学习实战和集体智慧...

2737
来自专栏企鹅号快讯

机器学习算法原理系列详解-机器学习基础与实践(一)-数据清洗

作者:Charlotte77 数学系的数据挖掘民工 博客专栏:http://www.cnblogs.com/charlotte77/ 个人公众号:Charlo...

2636
来自专栏上善若水

004计算机图形学之多边形的扫描转换和区域填充

多边形的扫描转换是指: 把多边形的顶点表示转换为点阵表示。也就是知道多边形的边界,如何找到多边形内部的点,即把多边形内部填上颜色。

2648
来自专栏大数据文摘

暑期追剧学AI (三) | 10分钟搞定机器学习数学思维:向量和它的朋友们

1965
来自专栏机器学习算法与Python学习

GBDT入门教程之原理、所解决的问题、应用场景讲解

GBDT (Gradient Boosting Decision Tree) 又叫 MART (Multiple Additive Regression Tr...

4405
来自专栏机器之心

业界 | 谷歌全新神经网络架构Transformer:基于自注意力机制,擅长自然语言理解

选自Google Research Blog 机器之心编译 参与:路雪、黄小天、蒋思源 近日,继论文《Attention Is All You Need》之后,...

7367
来自专栏黄成甲

数据分析之时间序列分析

顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点:

1732
来自专栏专知

用于神经网络机器翻译的全并行文本生成

在过去的几年里,神经网络为文本分类和问题回答等自然语言任务的准确性和质量带来了快速的提高。深度学习导致的令人印象深刻的结果的一个领域是需要机器生成自然语言文本的...

2935
来自专栏星流全栈

AI通过照片创建3D模型,3D建模师也要失业?

5458
来自专栏机器之心

学界 | 清华大学段路明组提出生成模型的量子算法

选自arXiv 机器之心编译 参与:乾树、樊晓芳 近日,清华大学段路明组提出一种生成模型的量子算法。在证明因子图为量子网络的特例的基础上,继而证明了量子算法在重...

3739

扫码关注云+社区

领取腾讯云代金券