前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python机器学习(1)-- 自己设计一个感知机(Perceptron)分类算法

Python机器学习(1)-- 自己设计一个感知机(Perceptron)分类算法

作者头像
红色石头
发布2017-12-28 15:32:35
2.1K0
发布2017-12-28 15:32:35
举报
文章被收录于专栏:红色石头的机器学习之路

Implementing a perceptron learning algorithm in Python

Define a Class

代码语言:javascript
复制
import numpy as np
class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications (updates) in each epoch.

    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta*(target - self.predict(xi))
                self.w_[1:] += update*xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

Training a perceptron model on the Iris dataset

代码语言:javascript
复制
import pandas as pd
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
代码语言:javascript
复制
df.tail()

0

1

2

3

4

145

6.7

3.0

5.2

2.3

Iris-virginica

146

6.3

2.5

5.0

1.9

Iris-virginica

147

6.5

3.0

5.2

2.0

Iris-virginica

148

6.2

3.4

5.4

2.3

Iris-virginica

149

5.9

3.0

5.1

1.8

Iris-virginica

We extract the first 100 class labels that correspond to 50 Iris-Setosa and 50 Iris-Versicolor flowers.

代码语言:javascript
复制
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

y = df.iloc[0:100, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)
X = df.iloc[0:100, [0,2]].values
plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend(loc='upper left')
# plt.show()
这里写图片描述
这里写图片描述

To train our perceptron algorithm, plot the misclassification error

代码语言:javascript
复制
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X,y)
plt.plot(range(1,len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')
# plt.show()
这里写图片描述
这里写图片描述

Visualize the decision boundaries for 2D datasets

代码语言:javascript
复制
from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot class sample
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl,0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)
代码语言:javascript
复制
plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal lenght [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
# plt.show()
这里写图片描述
这里写图片描述

Adaptive linear neurons and the convergence of learning

Implementing an Adaptive Linear Neuron in Python

代码语言:javascript
复制
class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    -------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -------------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ------------
        X : {array-like5}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        ------------
        self : object


        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)
代码语言:javascript
复制
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8,4))
ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X,y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')
ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X,y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')
# plt.show()
这里写图片描述
这里写图片描述

standardization

代码语言:javascript
复制
X_std = np.copy(X)
X_std[:,0] = (X_std[:,0] - X_std[:,0].mean()) / X_std[:,0].std()
X_std[:,1] = (X_std[:,1] - X_std[:,1].mean()) / X_std[:,1].std()
代码语言:javascript
复制
ada = AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
# plt.show()
这里写图片描述
这里写图片描述
代码语言:javascript
复制
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
# plt.show()
这里写图片描述
这里写图片描述

Large scale machine learning and stochastic gradient descent

代码语言:javascript
复制
from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    ------------
    w_ : 1d-array
        Weights after fitting.
    cost_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch
        if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling
        and initializing the weights.
    """
    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
        if random_state:
            seed(random_state)

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ------------
        X : {array-like}, shape = [n_samples, n_features]
            Training vector, where n_samples
            is the number of samples and
            n_features is the number of features.
        y: arrary-like, shape = [n_samples]
            Target values.

        Returns
        ------------
        self : object

        """
        self._initialize_weights(X.shape[1])
        self.cost_ = []
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
        """Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]

    def _initialize_weights(self, m):
        """Initialize weighs to zeros"""
        self.w_ = np.zeros(1+m)
        self.w_initialized = True

    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta*xi.dot(error)
        self.w_[0] += self.eta*error
        cost = 0.5 * error**2
        return cost

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)
代码语言:javascript
复制
ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-06-16 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Implementing a perceptron learning algorithm in Python
    • Define a Class
    • Training a perceptron model on the Iris dataset
      • We extract the first 100 class labels that correspond to 50 Iris-Setosa and 50 Iris-Versicolor flowers.
        • To train our perceptron algorithm, plot the misclassification error
          • Visualize the decision boundaries for 2D datasets
          • Adaptive linear neurons and the convergence of learning
            • Implementing an Adaptive Linear Neuron in Python
              • standardization
                • Large scale machine learning and stochastic gradient descent
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档