动手学深度学习——第一课笔记(上)

第一课:从上手到多类分类

课程首先介绍了深度学习的很多应用:例如增强学习、物体识别、语音识别、机器翻译、推荐系统、广告点击预测等。

课程目的:通过动手实现来理解深度学习,跟工业界应用相比,主要只是数据规模和模型复杂度的区别。

深度学习的轮子很多,例如Caffe,TensorFlow,mxnet,PyTorch,CNTK等。它们之间的主要区别在于:1.便利的开发;2.方便的部署。

mxnet之上的一个package是Gluon,主要目的是一次解决开发和部署。课程主要分为以下三个部分:

1. 环境配置

我的配置环境是Mac,Linux平台类似。

mxnet安装命令如下,前提是已经安装好了Anaconda,Anaconda的安装可以参考官网:

pip install mxnet

测试mxnet:

>>> import mxnet
>>> print mxnet.__version__
0.11.0

然后安装notedown,运行Jupyter并加载notedown插件:

pip install https://github.com/mli/notedown/tarball/master
jupyter notebook --NotebookApp.contents_manager_class='notedown.NotedownContentsManager'

通过ExecutionTime插件来对每个cell的运行计时,国内使用豆瓣源。

pip install jupyter_contrib_nbextensions -i https://pypi.douban.com/simple
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

2. NDArray

NDArray是MXNet储存和变换数据的主要工具,它与numpy非常类似。NDArray提供了CPU和GPU的异步计算,还提供了自动求导。NDArray的基本用法:

from mxnet import ndarray as nd

# 创建矩阵
nd.zeros((3, 4))
x = nd.ones((3, 4))
nd.array([[1,2],[2,3]])
y = nd.random_normal(0, 1, shape=(3, 4))

# 查看矩阵大小
y.shape

# 查看矩阵元素个数
y.size

# 矩阵加法
x + y

# 矩阵乘法
x * y

# 指数运算
nd.exp(y)

# 矩阵乘法
nd.dot(x, y.T)

# 广播操作
a = nd.arange(3).reshape((3,1))
b = nd.arange(2).reshape((1,2))
print('a:', a)
print('b:', b)
print('a+b:', a+b)

# NDArray与Numpy的转换
import numpy as np
x = np.ones((2,3))
y = nd.array(x)  # numpy -> mxnet
z = y.asnumpy()  # mxnet -> numpy
print([z, y])

NDArray的自动求导:

import mxnet.ndarray as nd
import mxnet.autograd as ag


# 定义矩阵
x = nd.array([[1, 2], [3, 4]])

# 添加自动求导
x.attach_grad()


# 记录x的变化
with ag.record():
    y = x * 2
    z = y * x

# 求导
z.backward()

# 判断导数是否相等
x.grad == 4*x

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

仅需15分钟,使用OpenCV+Keras轻松破解验证码

选自Medium 作者:Adam Geitgey 参与:李泽南、蒋思源 登录网站时必须输入的图片验证码可以用来识别访问者到底是人还是机器——这同时也是某种程度上...

34811
来自专栏人工智能LeadAI

谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

熟悉TensorFlow的人都知道,tf在Github上的主页是: https://github.com/tensorflow , 然后这个主页下又有两个比较...

3698
来自专栏机器之心

仅需15分钟,使用OpenCV+Keras轻松破解验证码

3459
来自专栏机器学习算法全栈工程师

(Keras/监督学习)15分钟搞定最新深度学习车牌OCR

作者:石文华 编辑:祝鑫泉 前 言 文章来源:https://hackernoon.com/latest-deep-l...

1.1K7

Weka机器学习平台的迷你课程

机器学习是个非常吸引人的研究领域,但是您怎么把它真正地应用到您自己的问题上呢?

2666
来自专栏企鹅号快讯

12306看了会沉默,国外大神利用机器学习15分钟破解网站验证码!

网站登录验证码的存在一直让人感到不爽,因为输错一个字往往就意味着账号密码什么的就得重新再输一遍。更有甚者(如12306网站),仅仅验证码一道工序就把人整到怀疑人...

3828
来自专栏北京马哥教育

Python破解验证码,只要15分钟就够了!

让我们一起攻破世界上最流行的WordPress的验证码插件 每个人都讨厌验证码——在你被允许访问一个网站之前,你总被要求输入那些烦人的图像中所包含的文本。 验...

3826
来自专栏专知

在浏览器上也能训练神经网络?TensorFlow.js带你玩游戏~

【导读】一直以来训练神经网络给我们的印象都是复杂、耗时、对硬件要求高。你有没有想过有一天在浏览器上也能训练神经网络~ 本文通过一篇详细的TensorFlow.j...

980
来自专栏应用案例

使用Python+Tensorflow的CNN技术快速识别验证码

2018年1月26/1月12日 ? NVIDIA 深度学习学院 带你快速进入火热的DL领域 正文共2929个字,17张图,预计阅读时间:8分钟。 近年来,机器学...

3716
来自专栏梦里茶室

Google机器学习教程心得(二)决策树与可视化

Visualizing a Decision Tree Google Machine Learning Recipes 2 官方中文博客 http://ch...

1929

扫码关注云+社区