动手学深度学习——第一课笔记(上)

第一课:从上手到多类分类

课程首先介绍了深度学习的很多应用:例如增强学习、物体识别、语音识别、机器翻译、推荐系统、广告点击预测等。

课程目的:通过动手实现来理解深度学习,跟工业界应用相比,主要只是数据规模和模型复杂度的区别。

深度学习的轮子很多,例如Caffe,TensorFlow,mxnet,PyTorch,CNTK等。它们之间的主要区别在于:1.便利的开发;2.方便的部署。

mxnet之上的一个package是Gluon,主要目的是一次解决开发和部署。课程主要分为以下三个部分:

1. 环境配置

我的配置环境是Mac,Linux平台类似。

mxnet安装命令如下,前提是已经安装好了Anaconda,Anaconda的安装可以参考官网:

pip install mxnet

测试mxnet:

>>> import mxnet
>>> print mxnet.__version__
0.11.0

然后安装notedown,运行Jupyter并加载notedown插件:

pip install https://github.com/mli/notedown/tarball/master
jupyter notebook --NotebookApp.contents_manager_class='notedown.NotedownContentsManager'

通过ExecutionTime插件来对每个cell的运行计时,国内使用豆瓣源。

pip install jupyter_contrib_nbextensions -i https://pypi.douban.com/simple
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

2. NDArray

NDArray是MXNet储存和变换数据的主要工具,它与numpy非常类似。NDArray提供了CPU和GPU的异步计算,还提供了自动求导。NDArray的基本用法:

from mxnet import ndarray as nd

# 创建矩阵
nd.zeros((3, 4))
x = nd.ones((3, 4))
nd.array([[1,2],[2,3]])
y = nd.random_normal(0, 1, shape=(3, 4))

# 查看矩阵大小
y.shape

# 查看矩阵元素个数
y.size

# 矩阵加法
x + y

# 矩阵乘法
x * y

# 指数运算
nd.exp(y)

# 矩阵乘法
nd.dot(x, y.T)

# 广播操作
a = nd.arange(3).reshape((3,1))
b = nd.arange(2).reshape((1,2))
print('a:', a)
print('b:', b)
print('a+b:', a+b)

# NDArray与Numpy的转换
import numpy as np
x = np.ones((2,3))
y = nd.array(x)  # numpy -> mxnet
z = y.asnumpy()  # mxnet -> numpy
print([z, y])

NDArray的自动求导:

import mxnet.ndarray as nd
import mxnet.autograd as ag


# 定义矩阵
x = nd.array([[1, 2], [3, 4]])

# 添加自动求导
x.attach_grad()


# 记录x的变化
with ag.record():
    y = x * 2
    z = y * x

# 求导
z.backward()

# 判断导数是否相等
x.grad == 4*x

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

TensorFlow核心使用要点

正文之前,小梦先来说说什么是TensorFlow。TensorFlow是谷歌研发的第二代人工智能学习系统,可被用于语音识别或图像识别等多项机器深度学 习领域。T...

2237
来自专栏玉树芝兰

如何用Python和深度神经网络寻找近似图片?

给你10万张图片,让你从中找出与某张图片最为近似的10张,你会怎么做?不要轻言放弃,也不用一张张浏览。使用Python,你也可以轻松搞定这个任务。

1111
来自专栏机器之心

资源 | Luminoth:基于TensorFlow的开源计算机视觉工具包

3037
来自专栏吉浦迅科技

TensorRT

作为Inference(推理)端的SDK的工具,TensorRT是可编程的处理加速器,主要是用来部署神经网络到Inference端之前,对于网络进行优化加速,来...

66111
来自专栏CSDN技术头条

基于OpenGL ES的深度学习框架编写

背景与工程定位 背景 项目组基于深度学习实现了视频风格化和人像抠图的功能,但这是在PC/服务端上跑的,现在需要移植到移动端,因此需要一个移动端的深度学习的计算框...

3588
来自专栏新智元

谷歌、亚马逊和百度的深度学习野心:TensorFlow、MXNet、PaddlePaddle 三大框架对比

【新智元导读】本文作者陈汝丹从定位、框架使用、分布式构成三个方面比较了 TensorFlow、MXNet、PaddlePaddle三个常用开源框架。 本文转载自...

3546
来自专栏小白课代表

软件分享 | SPSS 24 32位/64位 安装教程

SPSS for Windows是一个组合式软件包,它集数据录入、整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,...

1453
来自专栏AI科技大本营的专栏

用好这几款炼丹利器,调参从此得心应手

来源:PaperWeekly ▌01. Live CV 实现显示结果的CV开发环境 Live CV 是一个用于实现显示结果的计算机视觉算法开发环境,基于 Qt...

4596
来自专栏AI研习社

想要训练专属人脸识别模型?先掌握构建人脸数据集的三种绝招

雷锋网 AI 研习社按,随着深度学习的发展,很多技术已经落地,成为我们每天都能接触到的产品,人脸识别就是其中之一。人脸识别的应用范围很广,涉及上下班打卡、门禁、...

1232
来自专栏数据小魔方

think-cell chart系列9——折线图

今天跟大家分享think-cell chart系列的第9篇——折线图。 折线图是平时用的频率比较高的图表类型的了,下面教大家怎么在think-cell char...

4157

扫码关注云+社区