TensorFlow 深度学习笔记 Logistic Classification

Logistic Classification

Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载

About

simple but important classifier

  • Train your first simple model entirely end to end
  • 下载、预处理一些图片以分类
  • Run an actual logistic classifier on images data
  • Connect bit of math and code

Detail

Linear Classifier

之所以这样建模,是因为线性公式是最简单的数学模型,仅此而已。

  • Input: X (e.g. the pixels in an image)
  • Apply a linear function to X
  • Giant matrix multiply
  • Take inputs as a big vector
  • Multiply input vector with a matrix, W means weights
  • b means biased term
  • Machine learning adjust weights and bias for the best prediction
  • Output: Y, predictions for per output class
  • Y is a vector, represents the probability of each label
  • 好的预测中,正确的label的概率应当更接近1
  • 往往得到的Y一开始不是概率,而是一些具体值(scores/logits),所以需要转换,by:

Softmax回归模型:Wikipedia

Softmax

  • 代码 soft_max.py:Softmax实现与应用
  • input的score差异越大(可以全部乘10试试),则输出的各项label概率差异越大,反之差异越小
  • Softmax只关心几个label之间的概率,不关心具体值
  • 机器学习是一个让预测成功率升高的事情,因此是一个让score之间差异增大的过程

One hot encoding

正确预测结果应当是只有一个label成立,其他label不成立。这种情况下,预测概率最大的则是最可能的结果。

Example: take this test

  • one hot encoding在label很多的情况下not work well,因为output vector到处都是0,很稀疏,因此效率低
  • 好处:可以measure我们与理想情况之间的距离(compare two vectors)

分类器输出:[0.7 0.2 0.1] <=> 与label对应的真实情况:[1 0 0]

  • Compare two vectors: cross-entropy
  • D(S, L) != D(L, S)

Remember: Label don't log, for label zero

小结

找到合适的W和b,使得S和L的距离D的平均值,在整个数据集n中最小。

最小化cross-entropy

D的平均值即是Training loss,求和和矩阵相乘是个大数据的活。

两个参数的误差导致一个呈圆形的loss,所以我们要做的就是找到尽量靠近圆心的weight

机器学习问题变成了一个数值优化

  • 解决方法之一:Gradient descent,求导

修改参数,检查误差是否变大,往变小的方向修改,直到抵达bottom。

图中weight是二维的,但事实上可能有极多的weight

下一节实践

如果觉得我的文章对您有帮助,请随意打赏~

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏自学笔记

聚类算法

p=2时就说平时计算的几何距离,当p趋向于正无穷的时候,其实求的就不是x,y的距离了,而是求x y中最长的一个了。因为如果x大于y,在指数增长下x回远大于y,所...

36520
来自专栏量子位

如何用TensorFlow构建RNN?这里有一份极简的教程

王小新 编译自 KDnuggets 量子位 出品 | 公众号 QbitAI 本文作者Erik Hallström是一名深度学习研究工程师,他的这份教程以Echo...

50260
来自专栏专知

【专知-Java Deeplearning4j深度学习教程06】用卷积神经网络CNN进行图像分类

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视...

2.1K100
来自专栏游戏开发那些事

【Unity3d游戏开发】游戏中的贝塞尔曲线以及其在Unity中的实现

  RT,马三最近在参与一款足球游戏的开发,其中涉及到足球的各种运动轨迹和路径,比如射门的轨迹,高吊球,香蕉球的轨迹。最早的版本中马三是使用物理引擎加力的方式实...

62010
来自专栏ATYUN订阅号

使用Apache MXNet分类交通标志图像

有许多深度学习的框架,例如TensorFlow、Keras、Torch和Caffe,Apache MXNet由于其在多个GPU上的可伸缩性而受到欢迎。在这篇博文...

76360
来自专栏量子位

超生动图解LSTM和GPU:拯救循环神经网络的记忆障碍就靠它们了!

AI识别你的语音、回答你的问题、帮你翻译外语,都离不开一种特殊的循环神经网络(RNN):长短期记忆网络(Long short-term memory,LSTM)...

10630
来自专栏集智的专栏

使用腾讯云 GPU 学习深度学习系列之四:深度学习的特征工程

本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主。

3.8K40
来自专栏CreateAMind

CRF++代码分析

61150
来自专栏人工智能LeadAI

C++实现神经网络之一 | Net类的设计和神经网络的初始化

闲言少叙,直接开始 既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人...

34050
来自专栏小鹏的专栏

机器学习进阶系列

本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。

36570

扫码关注云+社区

领取腾讯云代金券