MXNET学习笔记(一):Module类(1)

Module 是 mxnet 提供给用户的一个高级封装的类。有了它,我们可以很容易的来训练模型。

Module 包含以下单元的一个 wraper

  • symbol : 用来表示网络前向过程的 symbol
  • optimizer: 优化器,用来更新网络。
  • exec_group: 用来执行 前向和反向计算。

所以 Module 可以帮助我们做

  • 前向计算,(由 exec_group 提供支持)
  • 反向计算,(由 exec_group 提供支持)
  • 更新网络,(由 optimizer 提供支持)

一个 Demo

下面来看 MXNET 官网上提供的一个 Module 案例

第一部分:准备数据

import logging
logging.getLogger().setLevel(logging.INFO)
import mxnet as mx
import numpy as np

fname = mx.test_utils.download('http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition/letter-recognition.data')
data = np.genfromtxt(fname, delimiter=',')[:,1:]
label = np.array([ord(l.split(',')[0])-ord('A') for l in open(fname, 'r')])

batch_size = 32
ntrain = int(data.shape[0]*0.8)
train_iter = mx.io.NDArrayIter(data[:ntrain, :], label[:ntrain], batch_size, shuffle=True)
val_iter = mx.io.NDArrayIter(data[ntrain:, :], label[ntrain:], batch_size)

第二部分:构建网络

net = mx.sym.Variable('data')
net = mx.sym.FullyConnected(net, name='fc1', num_hidden=64)
net = mx.sym.Activation(net, name='relu1', act_type="relu")
net = mx.sym.FullyConnected(net, name='fc2', num_hidden=26)
net = mx.sym.SoftmaxOutput(net, name='softmax')
mx.viz.plot_network(net)

第三部分:创建Module

mod = mx.mod.Module(symbol=net,
                    context=mx.cpu(),
                    data_names=['data'],
                    label_names=['softmax_label'])

# 通过data_shapes 和 label_shapes 推断其余参数的 shape,然后给它们分配空间
mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label)
# 初始化模型的参数
mod.init_params(initializer=mx.init.Uniform(scale=.1))
# 初始化优化器,优化器用来更新模型
mod.init_optimizer(optimizer='sgd', optimizer_params=(('learning_rate', 0.1), ))
# use accuracy as the metric
metric = mx.metric.create('acc')
# train 5 epochs, i.e. going over the data iter one pass
for epoch in range(5):
    train_iter.reset()
    metric.reset()
    for batch in train_iter:
        mod.forward(batch, is_train=True)       # 前向计算
        mod.update_metric(metric, batch.label)  # accumulate prediction accuracy
        mod.backward()                          # 反向传导
        mod.update()                            # 更新参数
    print('Epoch %d, Training %s' % (epoch, metric.get()))

关于 bind 的参数:

  • data_shapes : list of (str, tuple), str 是 数据 Symbol 的名字,tuple是 mini-batch 的形状,所以一般参数是[('data', (64, 3, 224, 224))]
  • label_shapes: list of (str, tuple),str 是 标签 Symbol 的名字,tuple是 mini-batch 标签的形状,一般 分类任务的 参数为 [('softmax_label'),(64,)]
  • 为什么上面两个参数都是 list 呢? 因为可能某些网络架构,不止一个 数据,不止一种 标签。

关于 forward的参数

  • data_batch : 一个 mx.io.DataBatch-like 对象。只要一个对象,可以 .data返回 mini-batch 训练数据, .label 返回相应的标签,就可以作为 data_batch 的实参 。
  • 关于 DataBatch对象:.data 返回的是 list of NDArray(网络可能有多个输入数据),.label 也一样。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏杨龙飞前端

scrollto 到指定位置

2494
来自专栏飞扬的花生

jsencrypt参数前端加密c#解密

      写程序时一般是通过form表单或者ajax方式将参数提交到服务器进行验证,如何防止提交的请求不被抓包后串改,虽然无法说绝对安全却给非法提交提高了难度...

3859
来自专栏一个爱瞎折腾的程序猿

sqlserver使用存储过程跟踪SQL

USE [master] GO /****** Object: StoredProcedure [dbo].[sp_perfworkload_trace_s...

2050
来自专栏一个会写诗的程序员的博客

Spring Reactor 项目核心库Reactor Core

Non-Blocking Reactive Streams Foundation for the JVM both implementing a Reactiv...

2142
来自专栏Ceph对象存储方案

Luminous版本PG 分布调优

Luminous版本开始新增的balancer模块在PG分布优化方面效果非常明显,操作也非常简便,强烈推荐各位在集群上线之前进行这一操作,能够极大的提升整个集群...

3105
来自专栏大内老A

The .NET of Tomorrow

Ed Charbeneau(http://developer.telerik.com/featured/the-net-of-tomorrow/) Exciti...

31410
来自专栏张善友的专栏

Silverlight + Model-View-ViewModel (MVVM)

     早在2005年,John Gossman写了一篇关于Model-View-ViewModel模式的博文,这种模式被他所在的微软的项目组用来创建Expr...

2958
来自专栏落花落雨不落叶

canvas画简单电路图

60911
来自专栏张善友的专栏

Miguel de Icaza 细说 Mix 07大会上的Silverlight和DLR

Mono之父Miguel de Icaza 详细报道微软Mix 07大会上的Silverlight和DLR ,上面还谈到了Mono and Silverligh...

2707
来自专栏张善友的专栏

Mix 10 上的asp.net mvc 2的相关Session

Beyond File | New Company: From Cheesy Sample to Social Platform Scott Hansel...

2547

扫码关注云+社区