3. R语言随机数生成

1. 均匀分布

函数: runif(n, min=0, max=1),n 表示生成的随机数数量,min 表示均匀分布的下限,max 表示均匀分布的上限,若省略参min、max,则默认生成[0,1]上的均匀分布随机数。

> q = runif(5,-1,1)
> q
[1]  0.73539909  0.72895000 -0.04357151  0.81696252  0.50210058

2. 正太分布

函数:rnorm(n, mean=0, sd=1),其中,n 表示生成的随机数数量,mean是正态分布的均值,默认为0,sd 是正态分布的标准差,默认时为1。

> x = rnorm(10,5,10)
> x
 [1] 10.319216 -3.697041 24.565294 -9.691016 -7.324058
 [6] -6.185308 -2.107426 -1.915519 13.306308 22.763153

3. 二项分布

函数:rbinom(n, size, prob),n 表示生成的随机数数量,size 表示进行贝努力试验的次数,prob 表示一次贝努力试验成功的概率。

> x = rbinom(10,10,0.9)
> x
 [1]  9  9 10  9  8  9  9  6 10 10

4. 指数分布

函数:rexp(n,lamda = 1),n 表示生成的随机数个数,lamda=1/mean

> x = rexp(10,3)
> x
 [1] 0.13044259 0.52299630 0.35504953 0.50061743 0.03373871
 [6] 1.03543586 2.08565786 0.81414981 0.31333523 0.02681090

5. 其他

除了生成上面介绍的几种分布的随机数,还可以生成poisson分布、t 分布、F 分布等很多种分布的随机数,只要在相应的分布名前加“r”就可以。

除了在分布名前面加r还可以加其他的参数,例如:p,q,d。功能见下图:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

深度学习目标检测指南:如何过滤不感兴趣的分类及添加新分类?

AI 科技大本营按:本文编译自 Adrian Rosebrock 发表在 PyImageSearch 上的一篇博文。该博文缘起于一位网友向原作者请教的两个关于目...

1012
来自专栏null的专栏

简单易学的机器学习算法——线性可分支持向量机

一、线性可分支持向量机的概念     线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可...

3785
来自专栏SIGAI学习与实践平台

动手训练模型系列:过拟合与训练集规模

loss值采用Cross_entropy计算,表征训练/测试样本与实际训练/测试分类结果的总误差。

882
来自专栏fangyangcoder

Andrew Ng机器学习课程笔记(一)之线性回归

http://www.cnblogs.com/fydeblog/p/7364598.html

1352
来自专栏CreateAMind

Deep Learning Book 中文5.7-6.2节 机器学习基础-深度前馈网络

监督学习算法、无监督学习算法、推动深度学习的挑战;基于梯度的学习:最大似然学习条件分布;不同的输出单元:多分类等。

662
来自专栏计算机视觉与深度学习基础

【深度学习】谷歌deepdream原理及tensorflow实现

什么是DeepDream? DeepDream是谷歌发布的对卷积神经网络(CNN)进行可视化的方法,当然它的用途不仅限于此,我们可以通过它让机器“做梦”,以下是...

3784
来自专栏PPV课数据科学社区

译:支持向量机(SVM)及其参数调整的简单教程(Python和R)

一、介绍 数据分类是机器学习中非常重要的任务。支持向量机(SVM)广泛应用于模式分类和非线性回归领域。 SVM算法的原始形式由Vladimir N.Vapnik...

5678
来自专栏数据处理

笔记之一

1706
来自专栏AI科技评论

开发 | 用 Kaggle 经典案例教你用 CNN 做图像分类!

前言 在上一篇专栏中,我们利用卷积自编码器对 MNIST 数据进行了实验,这周我们来看一个 Kaggle 上比较经典的一个图像分类的比赛 CIFAR( CIFA...

3936
来自专栏林德熙的博客

C# 已知点和向量,求距离的点

已知一个点 P 和向量 v ,求在这个点P按照向量 v 运行距离 d 的点 B 。

2013

扫码关注云+社区