聚类︱python实现 六大 分群质量评估指标(兰德系数、互信息、轮廓系数)

之前关于聚类题材的博客有以下两篇: 1、 笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项、使用技巧) 2、k-means+python︱scikit-learn中的KMeans聚类实现 .

1 R语言中的分群质量——轮廓系数

因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项、使用技巧)

没有固定标准,一般会3-10分群。或者用一些指标评价,然后交叉验证不同群的分群指标。 一般的指标:轮廓系数silhouette(-1,1之间,值越大,聚类效果越好)(fpc包),兰德指数rand;R语言中有一个包用30种方法来评价不同类的方法(NbClust),但是速度较慢 商业上的指标:分群结果的覆盖率;分群结果的稳定性;分群结果是否从商业上易于理解和执行 轮廓系数旨在将某个对象与自己的簇的相似程度和与其他簇的相似程度进行比较。轮廓系数最高的簇的数量表示簇的数量的最佳选择。

一般来说,平均轮廓系数越高,聚类的质量也相对较好。在这,对于研究区域的网格单元,最优聚类数应该是2,这时平均轮廓系数的值最高。但是,聚类结果(k=2)的 SSE 值太大了。当 k=6 时,SEE 的值会低很多,但此时平均轮廓系数的值非常高,仅仅比 k=2 时的值低一点。因此,k=6 是最佳的选择。 .

2 python中的分群质量

主要参考来自官方文档:Clustering

部分内容来源于:机器学习评价指标大汇总 个人比较偏好的三个指标有:Calinski-Harabaz Index(未知真实index的模型评估)、Homogeneity, completeness and V-measure(聚类数量情况)、轮廓系数

1.1 Adjusted Rand index 调整兰德系数

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_rand_score(labels_true, labels_pred)  
0.24

.

1.2 Mutual Information based scores 互信息

Two different normalized versions of this measure are available, Normalized Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used in the literature while AMI was proposed more recently and is normalized against chance:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)  
0.22504

.

1.3 Homogeneity, completeness and V-measure

同质性homogeneity:每个群集只包含单个类的成员。 完整性completeness:给定类的所有成员都分配给同一个群集。

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.homogeneity_score(labels_true, labels_pred)  
0.66...

>>> metrics.completeness_score(labels_true, labels_pred) 
0.42...

两者的调和平均V-measure:

>>> metrics.v_measure_score(labels_true, labels_pred)    
0.51...

.

1.4 Fowlkes-Mallows scores

The Fowlkes-Mallows score FMI is defined as the geometric mean of the pairwise precision and recall:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
>>>
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)  
0.47140...

.

1.5 Silhouette Coefficient 轮廓系数

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric='euclidean')
...                                                      
0.55...

.

1.6 Calinski-Harabaz Index

这个计算简单直接,得到的Calinski-Harabasz分数值ss越大则聚类效果越好。Calinski-Harabasz分数值ss的数学计算公式是(理论介绍来源于:用scikit-learn学习K-Means聚类):

 也就是说,类别内部数据的协方差越小越好,类别之间的协方差越大越好,这样的Calinski-Harabasz分数会高。  在scikit-learn中, Calinski-Harabasz Index对应的方法是metrics.calinski_harabaz_score. 在真实的分群label不知道的情况下,可以作为评估模型的一个指标。 同时,数值越小可以理解为:组间协方差很小,组与组之间界限不明显。 与轮廓系数的对比,笔者觉得最大的优势:快!相差几百倍!毫秒级

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.calinski_harabaz_score(X, labels)  
560.39...

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏码匠的流水账

聊聊FilterSecurityInterceptor

本文就来研究一下spring security的FilterSecurityInterceptor

531
来自专栏一个会写诗的程序员的博客

java.sql.SQLException: connection holder is null

java.sql.SQLException: connection holder is null

1481
来自专栏我和未来有约会

简练的视图模型 ViewModel

patterns & practices Developer Center 发布了 Unity Application Block 1.2 for Silver...

2349
来自专栏一个会写诗的程序员的博客

java.base.jmod

/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/jmods$ jmod list java....

1182
来自专栏MelonTeam专栏

Bitmap 源码阅读笔记

导语: Android 系统上的图片的处理,跟Bitmap 这个类脱不了关系,我们有必要去深入阅读里面的源码,以便在工作中能更好的处理Bitmap相关的问题...

2608
来自专栏专知

2018年SCI期刊最新影响因子排行,最高244,人工智能TPAMI9.455

2018年6月26日,最新的SCI影响因子正式发布,涵盖1万2千篇期刊。CA-Cancer J Clin 依然拔得头筹,其影响因子今年再创新高,达244.585...

1482
来自专栏c#开发者

XML Encryption in .Net

XML Encryption in .Net One of the new features being introduced with the Whidbey...

4477
来自专栏余生开发

echarts太阳分布图-饼图来回穿梭

var dom = document.getElementById("container");

1442
来自专栏码匠的流水账

聊聊HystrixThreadPool

hystrix-core-1.5.12-sources.jar!/com/netflix/hystrix/HystrixThreadPool.java

931
来自专栏吴伟祥

Apache POI总结 原

Apache POI  是用Java编写的免费开源的跨平台的 Java API,Apache POI提供API给Java程式对Microsoft Office格...

811

扫码关注云+社区