《机器学习》学习笔记1——绪论 机器学习概述

在亚马逊上买了Peter Flach教授写的段菲博士翻译的《机器学习》一书,开始机器学习之旅。开始之前,先介绍下Peter Flach教授:

布里斯托尔大学人工智能教授,拥有20多年的机器学习教研经验。在高度结构化的数据挖掘以及通过ROC分析来评估和改进机器学习模型方面,Flach是国际领先的研究人员。他还是Machine Learning期刊总编。曾担任2009年ACM知识发现与数据挖掘国际会议、2012年欧洲机器学习与数据挖掘国际会议的程序委员会共同主席。另著有Simply Logical:Intelligent Reasoning by Example

这是他的个人主页Peter Flach

绪论为机器学习概述,正文开始:

1、开篇用一个垃圾邮件过滤器作为引子——SpamAssassin,介绍了如何根据阈值判定是否属于垃圾邮件。书中背景知识1中提到用数学语言描述SpamAssassin的工作原理,将原本的决策规则

向量化表示为

2、机器学习的一般定义:机器学习是对依据经验提升自身性能或丰富自身知识的各种算法和系统的系统性研究。

3、在训练数据上取得优异性能只是手段,而非目的。如果一味追求训练阶段的性能,很容易导致另一个问题——过拟合(overfitting)。通俗地讲,假如你两周后就要考模式识别这门课,你向老师要了前几届的试卷来练(si)习(ji)练(ying)习(bei),由于你上课根本没听过,也没有那个时间来重新看一遍预习加复习,所以你知得死记硬背。当然,几张卷子你很快便得了满分,可以说你的训练阶段性能很好。BUT,考试的时候你就蒙逼了,老师稍微一变你就不会了,这就说明你测试阶段性能很差,这就是所谓的过拟合问题。还有另外一个词可以说就是你的推广性 OR 泛化能力(generalization)很差。

4、任务、模型和特征是机器学习的三大“原料”。

书中提到任务和学习问题是不同的两个概念,需要加以区分:

任务是通过模型来完成的,而学习问题则通过能够产生模型的学习算法来解决。

上图中也可以看出任务与学习问题是不同的,任务不包括训练阶段,BUT学习问题包括。我个人认为,解决学习问题是完成任务的前提,解决学习问题得到模型,然后用模型来完成任务。

5、机器学习所关注的问题是使用正确的特征来构建正确的模型以完成既定的任务。(Machine learning is concerned with using the right features to build the right models that achieve the right tasks.)这段话是作者Important points to remember中的一句话,以后还是得谨记心中并多多体会。

OK,Good Bye Alan!

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

开源啦:连DeepMind也捉急的游戏,OpenAI给你攻破第一关的高分算法

于是,团队推出了一种方法,叫做“随机网络蒸馏 (Random Network Distillation, RND) ”,专注培养AI的好奇心:隐藏房间什么的,只...

10350
来自专栏深度学习与数据挖掘实战

前沿|如何把Deep Learning思想应用到Graph Theory?

2001到2010年间,因为Social Networks的兴起,曾经有一段时间有很多学者热衷于研究Graph Theory,以及Graph Theory在Se...

15310
来自专栏量子位

简单易懂解释机器学习:以在线赌博和游戏公司为例

编译 | 量子位 若朴 赌徒往往依赖直觉,庄家偏爱铁一般的事实。他们的最终结局,殊途同归于预测。对于在线赌博和游戏公司而言,他们可以藉由用户鼠标的每次点击获得大...

42380
来自专栏ATYUN订阅号

为什么在深度学习中,AlphaGo Zero是一个巨大的飞跃?

1983年的电影“战争游戏”有一个令人难忘的高潮,即超级计算机WOPR(战争操作计划响应)被要求自行训练,以发现一个不可能获胜的游戏概念。Mathew Brod...

36680
来自专栏AI科技评论

论强化学习的根本缺陷

AI 科技评论按:本文来自斯坦福大学博士生 Andrey Kurenkov 在 The Gradient 上发表的文章。

14610
来自专栏专知

【深度】为什么Alphago Zero是深度学习领域的一次巨大突破?

【导读】Google DeepMind在Nature上发表最新论文,介绍了迄今最强最新的版本AlphaGo Zero,不使用人类先验知识,使用纯强化学习,将价值...

33150
来自专栏UAI人工智能

UAI AlphaGo 系列—— AlphaGo 的确是一个大事件

14440
来自专栏大数据文摘

非得从零开始学习?扒一扒强化学习的致命缺陷

Deepmind在Alphago上的成就把强化学习这一方法带入了人工智能的主流学习领域,【从零开始学习】也似乎成为了抛弃人类先验经验、获取新的技能并在各类游戏击...

9000
来自专栏AI研习社

论强化学习的根本缺陷

AI 研习社:本文来自斯坦福大学博士生 Andrey Kurenkov 在 The Gradient 上发表的文章。

6420
来自专栏人工智能快报

人工智能学会“听音辨声”

美国麻省理工学院的科研人员开发出一套人工智能系统,能够分辨出音乐中不同乐器发出的声音,并单独调音。

18440

扫码关注云+社区

领取腾讯云代金券