关于图像的二维卷积各种版本的实现(C++,Cuda和mex)

  卷积的相关知识本文不再描述,网上大把的资源,本文给出二维卷积的各种版本的实现。

C++版本

  首先是最常用的C++版本的卷积实现,代码如下:

void Conv2(int** filter, int** arr, int** res, int filterW, int filterH, int arrW, int arrH)  
{  
    int temp;  

    for (int i=0; i<filterH+arrH-1; i++)  
    {  
        for (int j=0; j<filterW+arrW-1; j++)  
        {  
            temp = 0;  
            for (int m=0; m<filterH; m++)  
            {  
                for (int n=0; n<filterW; n++)  
                {  
                    if ((i-m)>=0 && (i-m)<arrH && (j-n)>=0 && (j-n)<arrW)  
                    {  
                        temp += filter[m][n]*arr[i-m][j-n];  
                    }  
                }  
            }  
            res[i][j] = temp;  
        }  
    }  
} 

Matlab版本

quarters = single(imread('eight.tif'));
kernel = single([1 2 1; 0 0 0; -1 -2 -1]);
imagesc(quarters);
colormap(gray);

H = conv2(quarters, kernel, 'same');
imagesc(H);
colormap(gray);

Mex版本

  如何编写mex这里就不再描述了,直接上代码:

#include "mex.h"

void conv2Mex(float* src, float* dst, int numRows, int numCols, float* kernel)
{
    int boundCol = numCols - 1;
    int boundRow = numRows - 1;

    for (int c = 1; c < boundCol; c++)
    {
        for (int r = 1; r < boundRow - 1; r++)
        {
            int dstIndex = c * numRows + r;
            int kerIndex = 8;
            for (int kc = -1; kc < 2; kc++)
            {
                int srcIndex = (c + kc) * numRows + r;
                for (int kr = -1; kr < 2; kr++)
                    dst[dstIndex] += kernel[kerIndex--] * src[srcIndex + kr];
            }
        }
    }
}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, mxArray *prhs[])
{
    if (nrhs != 2)
        mexErrMsgTxt("Invaid number of input arguments");

    if (nlhs != 1)
        mexErrMsgTxt("Invalid number of outputs");

    if (!mxIsSingle(prhs[0]) && !mxIsSingle(prhs[1]))
        mexErrMsgTxt("input image and kernel type must be single");

    float* image = (float*)mxGetData(prhs[0]);
    float* kernel = (float*)mxGetData(prhs[1]);

    int numRows = mxGetM(prhs[0]);
    int numCols = mxGetN(prhs[0]);
    int numKRows = mxGetM(prhs[1]);
    int numKCols = mxGetN(prhs[1]);

    if (numKRows != 3 || numKCols != 3)
        mexErrMsgTxt("Invalid kernel size. It must be 3x3");

    plhs[0] = mxCreateNumericMatrix(numRows, numCols, mxSINGLE_CLASS, mxREAL);
    float* out = (float*)mxGetData(plhs[0]);

    conv2Mex(image, out, numRows, numCols, kernel);
}

Cuda版本

#ifndef __CONV2D3X3_H__
#define __CONV2D3X3_H__

extern void conv2Mex(float* in, float* out, int numRows, int numCols, float* kernel);

#endif // __CONV2D3X3_H__
#include "conv2Mex.h"

__global__ void conv2MexCuda(float* src,
                             float* dst,
                             int numRows,
                             int numCols,
                             float* kernel)
{
    int row = blockIdx.x;
    if (row < 1 || row > numRows - 1)
        return;

    int col = blockIdx.y;
    if (col < 1 || col > numCols - 1)
        return;

    int dstIndex = col * numRows + row;
    dst[dstIndex] = 0;
    int kerIndex = 3 * 3 - 1;
    for (int kc = -1; kc < 2; kc++)
    {
        int srcIndex = (col + kc) * numRows + row;
        for (int kr = -1; kr < 2; kr++)
        {
            dst[dstIndex] += kernel[kerIndex--] * src[srcIndex + kr];
        }
    }
}

void conv2Mex(float* src, float* dst, int numRows, int numCols, float* ker)
{
    int totalPixels = numRows * numCols;
    float *deviceSrc, *deviceKer, *deviceDst;

    cudaMalloc(&deviceSrc, sizeof(float) * totalPixels);
    cudaMalloc(&deviceDst, sizeof(float) * totalPixels);
    cudaMalloc(&deviceKer, sizeof(float) * 3 * 3);

    cudaMemcpy(deviceSrc, src, sizeof(float) * totalPixels, cudaMemcpyHostToDevice);
    cudaMemcpy(deviceKer, ker, sizeof(float) * 3 * 3, cudaMemcpyHostToDevice);
    cudaMemset(deviceDst, 0, sizeof(float) * totalPixels);

    dim3 gridSize(numRows, numCols);
    conv2MexCuda<<<gridSize, 1>>>(deviceSrc, deviceDst, numRows, numCols, deviceKer);

    cudaMemcpy(dst, deviceDst, sizeof(float) * totalPixels, cudaMemcpyDeviceToHost);

    cudaFree(deviceSrc);
    cudaFree(deviceDst);
    cudaFree(deviceKer);
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术小黑屋

How to Share Git Tag

Now I have two tags under my git repository. Let’s take a look at how to push th...

662
来自专栏吉浦迅科技

为啥在Matlab上用NVIDIA Titan V训练的速度没有GTX1080快?

在Matlab官方论坛上看到这个帖子,希望给大家带来参考 有一天,有人在Matlab的论坛上发出了求救帖: ? 楼主说: 我想要加快我的神经网络训练,所以把G...

4648
来自专栏AI科技大本营的专栏

TensorFlow 1.8.0正式发布,Bug修复和改进内容都在这里了

【导语】TensorFlow 1.8.0 近日正式发布,新版本主要有以下改进内容,AI科技大本营对其编译如下。 ▌主要特点及改进 可以将 tf.contrib...

3249
来自专栏机器之心

圣诞快乐——Keras+树莓派:用深度学习识别圣诞老人

3788
来自专栏机器之心

教程 | 如何将模型部署到安卓移动端,这里有一份简单教程

截至 2018 年,全球活跃的安卓设备已经超过了 20 亿部。安卓手机的迅速普及在很大程度上得益于各种各样的智能应用,从地图到图片编辑器无所不有。随着深度学习技...

1411
来自专栏机器学习人工学weekly

机器学习人工学weekly-2018/9/23

Rosetta: Understanding text in images and videos with machine learning

735
来自专栏AI研习社

如何利用微信监管你的TF训练?

之前回答问题【在机器学习模型的训练期间,大概几十分钟到几小时不等,大家都会在等实验的时候做什么?(http://t.cn/Rl8119m)】的时候,说到可以用微...

3464
来自专栏郭诗雅的专栏

动感光波发射!Unity AR开发之 3d 物体识别小记

在 vuforia 官网中,不仅可以识别图片,还可以识别几何体,特别是从 vuforia4.x 开始支持识别更不规则的3d物体。本文将详细介绍如何在 Unity...

7812
来自专栏磐创AI技术团队的专栏

Tensorflow多GPU使用详解

7334
来自专栏CreateAMind

Caption Generation 比google的方法更快(6 hours v.s. several weeks)

You can use the code in this repo to genearte a MSCOCO evaluation server submiss...

1095

扫码关注云+社区