机器学习入门系列03,Error的来源:偏差和方差(bias 和 variance)

引用课程:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html

先看这里,可能由于你正在查看这个平台行间公式不支持很多的渲染,所以最好在我的CSDN上查看,传送门:(无奈脸)

CSDN博客文章地址:http://blog.csdn.net/zyq522376829/article/details/66611368

回顾

第二篇中神奇宝贝的例子:

可以看出越复杂的model 再测试集上的性能并不是越好

这篇要讨论的就是 error 来自什么地方?

error主要的来源有两个,bias(偏差) 和 variance(方差)

估测

假设上图为神奇宝贝cp值的真正方程,当然这只有Niantic(制作《Pokemon Go》的游戏公司)知道。从训练集中可以找到真实方程$\hat{f}$ 的近似方程 $f^{*}$。

估测bias 和 variance

估测变量 $x$ 的平均值

  • 假设$x$的平均值为 $\mu$,方差为 $\sigma^{2}$

估测平均值怎么做呢?

  • 首先拿到N个样品点:${x^{1}, x^{2}, \ldots, x^{N}}$
  • 计算平均值得到$m$, $m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$

但是如果计算很多组的m ,然后求m的期望

E[m] = E[\frac{1}{N} \sum_{n} x^{n}] = \frac{1}{N}\sum_{n}E[x^{n}] = \mu

这个估计呢是无偏估计(unbiased)。

然后m分布对于 $\mu$ 的离散程度(方差):

Var[m] = \frac{\sigma^{2}}{N}

这主要取决于N,下图可看出N越小越离散

估测变量 $x$ 的方差

首先用刚才的方法估测m,

m = \frac{1}{N} \sum_{n} x^{n} \neq \mu

然后再做下面计算:

s^{2} = \frac{1}{N} \sum_{n}(x^{n} - m)^{2}

就可以用$s^{2}$来估测 $\sigma^{2}$

这个估计是有偏估计(biased),

求 $s^{2}$的期望值:

E[s^{2}] = \frac{N - 1}{N} \sigma^{2} \neq \sigma^{2}

用靶心来说明一下bias和variance的影响

靶心为真正的方程 $\hat{f}$ ,深蓝色点为$f^{}$ ,是实验求得的方程。求$f^{}$的期望值$\bar{f} = E[f^{*}]$,即图中浅蓝色的点。

$\bar{f}$ 和 $\hat{f}$之间的距离就是误差 bias,而$\bar{f}$ 和 $f^{*}$ 之间的距离就是误差 variance。4幅图的对比观察两个误差的影响。

bias就是射击时瞄准的误差,本来应该是瞄准靶心,但bias就造成瞄准准心的误差;而variance就是虽然瞄准在 $\bar{f}$,但是射不准,总是射在 $\bar{f}$ 的周围。

为什么会有很多的 $f^{*}$?

讨论系列02中的案例:这里假设是在平行宇宙中,抓了不同的神奇宝贝

用同一个model,在不同的训练集中找到的 $f^{*}$就是不一样的

这就像在靶心上射击,进行了很多组(一组多次)。现在需要知道它的散布是怎样的,将100个宇宙中的model画出来

不同的数据集之前什么都有可能发生—

考虑不同model的variance

一次model的variance就比较小的,也就是是比较集中,离散程度较小。而5次model 的 variance就比较大,同理散布比较广,离散程度较大。

所以用比较简单的model,variance是比较小的(就像射击的时候每次的时候,每次射击的设置都集中在一个比较小的区域内)。如果用了复杂的model,variance就很大,散布比较开。

这也是因为简单的model受到不同训练集的影响是比较小的。

考虑不同model的 bias

这里没办法知道真正的 $\hat{f}$,所以假设图中的那条黑色曲线为真正的 $\hat{f}$

结果可视化,一次平均的 $\bar{f}$没有5次的好,虽然5次的整体结果离散程度很高。

一次model的bias比较大,而复杂的5次model,bias就比较小。

直观的解释:简单的model函数集的space比较小,所以可能space里面就没有包含靶心,肯定射不中。而复杂的model函数集的space比较大,可能就包含的靶心,只是没有办法找到确切的靶心在哪,但足够多的,就可能得到真正的 $\bar{f}$。

bias v.s. variance

将系列02中的误差拆分为bias何variance。简单model(左边)是bias比较大造成的error,这种情况叫做 Underfitting(欠拟合),而复杂model(右边)是variance过大造成的error,这种情况叫做Overfitting(过拟合)

怎么判断?

分析

  • 如果model没有很好的fit训练集,就是bias过大,也就是Underfitting
  • 如果model很好的fit训练集,即再训练集上得到很小的error,但在测试集上得到大的error,这意味着model可能是variance比较大,就是Overfitting。

对于Underfitting和Overfitting,是用不同的方式来处理的

bias大,Underfitting

此时应该重新设计model。因为之前的函数集里面可能根本没有包含$\hat{f}$。可以:

  • 将更多的feature加进去,比如考虑高度重量,或者HP值等等。
  • 或者考虑更多次幂、更复杂的model。

如果此时强行再收集更多的data去训练,这是没有什么帮助的,因为设计的函数集本身就不好,再找更多的训练集也不会更好。

variance大,Overfitting

简单粗暴的方法:More data

但是很多时候不一定能做到收集更多的data。可以针对对问题的理解对数据集做调整(Regularization)。比如识别手写数字的时候,偏转角度的数据集不够,那就将正常的数据集左转15度,右转15度,类似这样的处理。

选择model

  • 现在在bias和variance之间就需要一个权衡
  • 想选择的model,可以平衡bias和variance产生的error,使得总error最小
  • 但是下面这件事最好不要做:

用训练集训练不同的model,然后在测试集上比较error,model3的error比较小,就认为model3好。但实际上这只是你手上的测试集,真正完整的测试集并没有。比如在已有的测试集上error是0.5,但有条件收集到更多的测试集后通常得到的error都是大于0.5的。

Cross Validation(交叉验证)

图中public的测试集是已有的,private是没有的,不知道的。Cross Validation 就是将训练集再分为两部分,一部分作为训练集,一部分作为验证集。用训练集训练model,然后再验证集上比较,确实出最好的model之后(比如model3),再用全部的训练集训练model3,然后再用public的测试集进行测试,此时一般得到的error都是大一些的。不过此时会比较想再回去调一下参数,调整model,让在public的测试集上更好,但不太推荐这样。(心里难受啊,大学数模的时候就回去调,来回痛苦折腾)

上述方法可能会担心将训练集拆分的时候分的效果比较差怎么办,可以用下面的方法。

N-fold Cross Validation(N-折交叉验证)

将训练集分成N份,比如分成3份。

比如在三份中训练结果Average Error是model1最好,再用全部训练集训练model1。(貌似数模也干过,当年都是莫名其妙的分,想想当年数模的时候都根本来不及看是为什么,就是一股脑上去做00oo00)

新博客地址:http://yoferzhang.com/post/20170327ML03BiasAndVariance

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【干货】剑桥大学Alex Kendall 208页博士论文-计算机视觉深度学习中的几何结构与不确定性

【导读】计算机视觉(Computer Vision)是一门多学科科学,致力于让机器具备“看”的能力。 这个问题是很具有挑战性的,因为我们从现实的视觉世界中观察到...

28440
来自专栏一个爱吃西瓜的程序员

什么是数据挖掘?

近年来,数据分析,数据挖掘和数据科学等领域不可谓不火热。而且人工智能、算法、数据科学领域的薪酬普遍高于传统互联网行业。既然决定从事互联网行业,那就得给自己找一个...

34790
来自专栏数据科学与人工智能

【算法】机器学习和数据科学最常用到的TOP10算法

数据科学的实践,需要使用算法和数据科学方法,来帮助数据专业人员从数据中提取洞察力和价值。Kaggle最近的一项调查显示,数据专家在2017年比其他数据科学方法更...

34940
来自专栏机器学习算法与Python学习

资料 | 机器学习数学基础教程【PDF下载】

《机器学习数学基础》由Marc Peter Deisenroth、A Aldo Faisal和Cheng Soon Ong撰写,共381页。这本书并没有涵盖前沿...

73950
来自专栏AI科技评论

干货 | “回归分析”真的算是“机器学习”吗?

是什么将“统计”从“机器学习”中分离出来的?个被讨论过无数次的问题。关于这个问题的文章有很多,人们对其好坏莫衷一是。但是我发现,在“统计”和“机器学习”的争论上...

33270
来自专栏AI科技评论

学界 | 百度研究院:都知道数据越多越好,现在我们还能预测增加了数据以后具体有多好

AI 科技评论按:在深度学习界,「数据越多,模型表现就越好」是大家公认的规律,不过很多时候我们都不太清楚具体的「增加多少数据,能带来多大提升」。前几个月谷歌的一...

381100
来自专栏机器学习算法原理与实践

协同过滤推荐算法总结

    推荐算法具有非常多的应用场景和商业价值,因此对推荐算法值得好好研究。推荐算法种类很多,但是目前应用最广泛的应该是协同过滤类别的推荐算法,本文就对协同过滤...

27320
来自专栏新智元

【重磅】微软AI首席科学家邓力:深度学习技术及趋势报告(75页PPT下载)

【新智元导读】微软人工智能首席科学家邓力博士在上海IEEE-ICASSP2016大会上的演讲报告。本报告分为深度学习的机器感知、机器认知和未来挑战三大部分,着重...

44580
来自专栏AI研习社

我们应当如何理解视频中的人类行为?

最近 ICCV 2017 公布了论文录用的情况,我照例扫了一遍论文列表寻找感兴趣的文章。“What Actions are Needed for Underst...

31580
来自专栏PaddlePaddle

【PaddlePaddle视频新课】之语义角色标注

PaddlePaddle之语义角色标注 http://bit.baidu.com/course/detail/id/178/column/117.html

9620

扫码关注云+社区

领取腾讯云代金券