人工智能即将来了,他将怎样影响我们的生活?

人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。在讨论这些之前,也许我们应该先考虑一下人类的结局。

有人可能觉得谈论这个话题太夸张了,

那先回忆一下人类历史上究竟发生了哪些不可思议的事情。

不可思议的事情,需要请几个穿越者来判定。

我们请1个出生于公元0年出生的人(汉朝人)穿越到公元1600年(明朝),尽管跨越了1600年,但这个人可能对周围人的生活不会感到太夸张,只不过换了几个王朝,依旧过着面朝黄土背朝天的日子罢了。

但如果请1个1600年的英国人穿越到1850年的英国,看到巨大的钢铁怪物在水上路上跑来跑去,这个人可能直接被吓尿了,这是250年前的人从未想象过的。

如果再请1个1850的人穿越到1980年,听说一颗炸弹可以夷平一座城市,这个人可能直接吓傻了,130年前诺贝尔都还没有发明出炸药。

那再请1个1980年的人到现在呢?这个人会不会被吓哭呢?

如果35年前的人,几乎完全无法想象互联网时代的生活,那么人类文明进入指数发展的今天,我们怎么能想象35年后的时代?

超人工智能,则是35年后的统治者。

首先,我们明确一下人工智能的分类:

目前主流观点的分类是三种。

弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。

弱人工智能依赖于计算机强大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。

目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。

强人工智能:人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多。

百度的百度大脑和微软的小冰,都算是往强人工智能的探索,通过庞大的数据,帮助强人工智能逐渐学习。

强人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。

超人工智能:各方面都超过人类的人工智能。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的存在。

当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。

我们距离超人工智能时代,到底有多远呢?

首先是电脑的运算能力,

电脑运算能力每两年就翻一倍,这是有历史数据支撑的。目前人脑的运算能力是10^16 cps,也就是1亿亿次计算每秒。现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了。

而目前我们普通人买的电脑运算能力只相当于人脑千分之一的水平。听起来还是弱爆了,但是,按照目前电子设备的发展速度,我们在2025年花5000人民币就可以买到和人脑运算速度抗衡的电脑了。

其次是让电脑变得智能,

目前有两种尝试让电脑变得智能,一种是做类脑研究。现在,我们已经能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。

另一种是模仿学习过程,让人工智能不断修正。基于互联网产生的庞大数据,让人工智能不断学习新的东西,并且不断进行自我更正。百度的百度大脑据说目前有4岁的智力,可以进行几段连续的对话,可以根据图片判断一个人的动作。尽管目前出错的次数依旧很多,但是这种能力的变化是一种质变。

在全球最聪明的科学家眼中,强人工智能的出现已经不再是会不会的问题,而是什么时候的问题,2013年,有一个数百位人工智能专家参与的调查 “你预测人类级别的强人工智能什么时候会实现?”

结果如下:

2030年:42%的回答者认为强人工智能会实现

2050年:25%的回答者

2070年:20%

2070年以后:10%

永远不会实现:2%

也就是说,超过2/3的科学家的科学家认为2050年前强人工智能就会实现,而只有2%的人认为它永远不会实现。

最关键的是,全球最顶尖的精英正在抛弃互联网,转向人工智能——斯坦福、麻省理工、卡内基梅隆、伯克利四所名校人工智能专业的博士生第一份offer已经可以拿到200-300万美金。这种情况历史上从来没

没有发生过。

奇点大学(谷歌、美国国家航天航空局以及若干科技界专家联合建立)的校长库兹韦尔则抱有更乐观的估计,他相信电脑会在2029年达成强人工智能,到2045年,进入超人工智能时代。

所以,如果你觉得你还能活30、40年的话,那你应该能见证超人工智能的出现。

本文来自企鹅号 - 超界产业联盟媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

专访 | 今日头条李磊:顶级AI专家是不分学校和背景的,年轻人要有自己的判断

今日头条科学家、人工智能实验室总监 李磊 文 | 鸽子 李磊博士是今日头条人工智能实验室(Toutiao AI Lab)总监,原百度美国深度学习实验室“少帅科学...

6587
来自专栏落影的专栏

硅谷企业面试的感受

在过去的几年里,各类公司的面试我都有所经历,小到十人左右的创业公司,大到几万人的腾讯阿里,面试过程大同小异。 但是最近又有新的收获,故开此篇以分享具体的过程和...

1984
来自专栏AI研习社

转行人士如何在人工智能领域保持一定的竞争力?

原问题描述: 没有学术认可:转行意味着没有相关领域的论文记录和对应的学位,即便水了一篇,被学术界认可的概率很低。而且码力有限,只要科班一直保持写码学习,写码速度...

35611
来自专栏量子位

吴恩达官宣下一步:新推深度学习新课程,继续培养AI人才

李林 允中 编译整理 量子位 出品 | 公众号 QbitAI 刚刚,吴恩达如期发布了自己的新动向。 今年3月,吴恩达从百度首席科技学家人上离职后,关于他新动向的...

3634
来自专栏量子位

李飞飞谈AI:现在是入行好时机,人工智能+医疗有怎样的机会?

陈桦 编译自 ACM 量子位 报道 | 公众号 QbitAI 最近,李飞飞关于人工智能的一些看法,发表在了国计算机协会(ACM)的官方网站的“People of...

5166
来自专栏企鹅号快讯

Yann LeCun卸任FAIR主任,任首席AI科学家搞科研!

当地时间1月23日,执掌Facebook人工智能实验室(FAIR)的杨立昆(Yann LeCun)在自己的个人Facebook账号上宣布,他将不再担任Faceb...

1968
来自专栏人工智能快报

谭铁牛院士谈人工智能发展新动态

◆ ◆ ◆ ◆ 11月25日,模式识别与人工智能学科前沿研讨会在自动化所召开。会上,谭铁牛院士做“人工智能新动态”报告,回顾了近代以来历次科技革命及其广泛影响,...

3476
来自专栏IT派

Python告诉你:知乎上有哪些收入百万的Live

爬取了知乎上所有的Live数据。从Live开播到现在一共是五千多场。分析这些Live的时候,发现很多很有趣的东西,比如有些Live特别长,可以长达数个小时,有些...

853
来自专栏PPV课数据科学社区

大数据时代,传统统计学依然是数据分析的灵魂

在数据“爆炸”的时代,大数据常常被寄予厚望。到底,什么样的数据才算大数据,怎样才能用好大数据,传统统计学还有用武之地吗?清华大学统计学研究中心前不久成立,著名统...

35510
来自专栏智能相对论

为什么这两家娱乐公司都在不务正业搞AI竞赛?

市场一直在变,而在公众认知范围内,视频行业的竞争点在内容、在流量、在资金。直到近期,爱奇艺AI竞赛“发榜”,市场惊觉在竞争格局越发紧张的现在,在线视频已经在凭技...

1083

扫码关注云+社区