前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tf25: 使用深度学习做阅读理解+完形填空

tf25: 使用深度学习做阅读理解+完形填空

作者头像
MachineLP
发布2018-01-09 11:24:56
2.2K0
发布2018-01-09 11:24:56
举报
文章被收录于专栏:小鹏的专栏

记的在学生时代,英语考试有这么一种类型的题,叫:阅读理解。首先让你读一段洋文材料,然后回答一些基于这个洋文材料提的问题。

我先给你出一道阅读理解

Big Panda learned to code when he was 21. He live in China and have no life, feel like a big loser. But here is one thing Panda want you to remember…it´s never too late! You can do anything if you put your heart on it!

____ is the loser.(下划线处该填什么呢?)

我出的这道填空题,对人来说轻而易举,但是要让机器回答就很难了。机器阅读和理解人类语言是非常有挑战性的。

本帖就使用TensorFlow练习一个阅读理解,看看准确率能到什么程度。

使用的数据集

本帖只使用”非死不可”提供的《Children’s Book Test》数据集。

数据预处理
代码语言:javascript
复制
import re
import random
import ast
import itertools
import pickle
import numpy as np
 
train_data_file = './CBTest/data/cbtest_NE_train.txt'
valid_data_file = './CBTest/data/cbtest_NE_valid_2000ex.txt'
 
def preprocess_data(data_file, out_file):
	# stories[x][0]  tories[x][1]  tories[x][2]
	stories = []
	with open(data_file) as f:
		story = []
		for line in f:
			line = line.strip()
			if not line:
				story = []
			else:
				_, line = line.split(' ', 1)
				if line:
					if '\t' in line:
						q, a, _, answers = line.split('\t')
						# tokenize
						q = [s.strip() for s in re.split('(\W+)+', q) if s.strip()]
						stories.append((story, q, a))
					else:
						line = [s.strip() for s in re.split('(\W+)+', line) if s.strip()]
						story.append(line)
 
	samples = []
	for story in stories:
		story_tmp = []
		content = []
		for c in story[0]:
			content += c
		story_tmp.append(content)
		story_tmp.append(story[1])
		story_tmp.append(story[2])
 
		samples.append(story_tmp)
 
	random.shuffle(samples)
	print(len(samples))
 
	with open(out_file, "w") as f:
		for sample in samples:
			f.write(str(sample))
			f.write('\n')
 
preprocess_data(train_data_file, 'train.data')
preprocess_data(valid_data_file, 'valid.data')
 
# 创建词汇表
def read_data(data_file):
	stories = []
	with open(data_file) as f:
		for line in f:
			line = ast.literal_eval(line.strip())
			stories.append(line)
	return stories
 
 
stories = read_data('train.data') + read_data('valid.data')
 
content_length = max([len(s) for s, _, _ in stories])
question_length = max([len(q) for _, q, _ in stories])
print(content_length, question_length)
 
vocab = sorted(set(itertools.chain(*(story + q + [answer] for story, q, answer in stories))))
vocab_size = len(vocab) + 1
print(vocab_size)
word2idx = dict((w, i + 1) for i,w in enumerate(vocab))
pickle.dump((word2idx, content_length, question_length, vocab_size), open('vocab.data', "wb"))
 
# From keras 补齐
def pad_sequences(sequences, maxlen=None, dtype='int32',
                  padding='post', truncating='post', value=0.):
    lengths = [len(s) for s in sequences]
 
    nb_samples = len(sequences)
    if maxlen is None:
        maxlen = np.max(lengths)
 
    # take the sample shape from the first non empty sequence
    # checking for consistency in the main loop below.
    sample_shape = tuple()
    for s in sequences:
        if len(s) > 0:
            sample_shape = np.asarray(s).shape[1:]
            break
 
    x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)
    for idx, s in enumerate(sequences):
        if len(s) == 0:
            continue  # empty list was found
        if truncating == 'pre':
            trunc = s[-maxlen:]
        elif truncating == 'post':
            trunc = s[:maxlen]
        else:
            raise ValueError('Truncating type "%s" not understood' % truncating)
 
        # check `trunc` has expected shape
        trunc = np.asarray(trunc, dtype=dtype)
        if trunc.shape[1:] != sample_shape:
            raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %
                             (trunc.shape[1:], idx, sample_shape))
 
        if padding == 'post':
            x[idx, :len(trunc)] = trunc
        elif padding == 'pre':
            x[idx, -len(trunc):] = trunc
        else:
            raise ValueError('Padding type "%s" not understood' % padding)
    return x
 
# 转为向量
def to_vector(data_file, output_file):
	word2idx, content_length, question_length, _ = pickle.load(open('vocab.data', "rb"))
	
	X = []
	Q = []
	A = []
	with open(data_file) as f_i:
		for line in f_i:
			line = ast.literal_eval(line.strip())
			x = [word2idx[w] for w in line[0]]
			q = [word2idx[w] for w in line[1]]
			a = [word2idx[line[2]]]
 
			X.append(x)
			Q.append(q)
			A.append(a)
 
	X = pad_sequences(X, content_length)
	Q = pad_sequences(Q, question_length)
 
	with open(output_file, "w") as f_o:
		for i in range(len(X)):
			f_o.write(str([X[i].tolist(), Q[i].tolist(), A[i]]))
			f_o.write('\n')
 
to_vector('train.data', 'train.vec')
to_vector('valid.data', 'valid.vec')
 
 
"""
# to_word
word2idx, content_length, question_length, _ = pickle.load(open('vocab.data', "rb"))
 
def get_value(dic,value):
    for name in dic:
        if dic[name] == value:
            return name
 
with open('train.vec') as f:
	for line in f:
		line = ast.literal_eval(line.strip())
		for word in line[0]:
			print(get_value(word2idx, word))
"""

生成的文件:vocab.data词汇表、train.vec、valid.vec数据的向量表示。

训练

https://arxiv.org/pdf/1606.02245v4.pdf

代码语言:javascript
复制
import tensorflow as tf
import pickle
import numpy as np
import ast
from collections import defaultdict
 
train_data = 'train.vec'
valid_data = 'valid.vec'
 
word2idx, content_length, question_length, vocab_size = pickle.load(open('vocab.data', "rb"))
print(content_length, question_length, vocab_size)
 
batch_size = 64
 
train_file = open(train_data)
def get_next_batch():
	X = []
	Q = []
	A = []
	for i in range(batch_size):
		for line in train_file:
			line = ast.literal_eval(line.strip())
			X.append(line[0])
			Q.append(line[1])
			A.append(line[2][0])
			break
 
	if len(X) == batch_size:
		return X, Q, A
	else:
		train_file.seek(0)
		return get_next_batch()
 
def get_test_batch():
	with open(valid_data) as f:
		X = []
		Q = []
		A = []
		for line in f:
			line = ast.literal_eval(line.strip())
			X.append(line[0])
			Q.append(line[1])
			A.append(line[2][0])
		return X, Q, A
 
 
X = tf.placeholder(tf.int32, [batch_size, content_length])   # 洋文材料
Q = tf.placeholder(tf.int32, [batch_size, question_length])  # 问题
A = tf.placeholder(tf.int32, [batch_size])                   # 答案
 
# drop out
keep_prob = tf.placeholder(tf.float32)
 
def glimpse(weights, bias, encodings, inputs):
	weights = tf.nn.dropout(weights, keep_prob)
	inputs = tf.nn.dropout(inputs, keep_prob)
	attention = tf.transpose(tf.matmul(weights, tf.transpose(inputs)) + bias)
	attention = tf.batch_matmul(encodings, tf.expand_dims(attention, -1))
	attention = tf.nn.softmax(tf.squeeze(attention, -1))
	return attention, tf.reduce_sum(tf.expand_dims(attention, -1) * encodings, 1)
 
def neural_attention(embedding_dim=384, encoding_dim=128):
	embeddings = tf.Variable(tf.random_normal([vocab_size, embedding_dim], stddev=0.22), dtype=tf.float32)
	tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-4), [embeddings])
 
	with tf.variable_scope('encode'):
		with tf.variable_scope('X'):
			X_lens = tf.reduce_sum(tf.sign(tf.abs(X)), 1)
			embedded_X = tf.nn.embedding_lookup(embeddings, X)
			encoded_X = tf.nn.dropout(embedded_X, keep_prob)
			gru_cell = tf.nn.rnn_cell.GRUCell(encoding_dim)
			outputs, output_states = tf.nn.bidirectional_dynamic_rnn(gru_cell, gru_cell, encoded_X, sequence_length=X_lens, dtype=tf.float32, swap_memory=True)
			encoded_X = tf.concat(2, outputs)
		with tf.variable_scope('Q'):
			Q_lens = tf.reduce_sum(tf.sign(tf.abs(Q)), 1)
			embedded_Q = tf.nn.embedding_lookup(embeddings, Q)
			encoded_Q = tf.nn.dropout(embedded_Q, keep_prob)
			gru_cell = tf.nn.rnn_cell.GRUCell(encoding_dim)
			outputs, output_states = tf.nn.bidirectional_dynamic_rnn(gru_cell, gru_cell, encoded_Q, sequence_length=Q_lens, dtype=tf.float32, swap_memory=True)
			encoded_Q = tf.concat(2, outputs)
 
	W_q = tf.Variable(tf.random_normal([2*encoding_dim, 4*encoding_dim], stddev=0.22), dtype=tf.float32)
	b_q = tf.Variable(tf.random_normal([2*encoding_dim, 1], stddev=0.22), dtype=tf.float32)
	W_d = tf.Variable(tf.random_normal([2*encoding_dim, 6*encoding_dim], stddev=0.22), dtype=tf.float32)
	b_d = tf.Variable(tf.random_normal([2*encoding_dim, 1], stddev=0.22), dtype=tf.float32)
	g_q = tf.Variable(tf.random_normal([10*encoding_dim, 2*encoding_dim], stddev=0.22), dtype=tf.float32)
	g_d = tf.Variable(tf.random_normal([10*encoding_dim, 2*encoding_dim], stddev=0.22), dtype=tf.float32)
 
	with tf.variable_scope('attend') as scope:
		infer_gru = tf.nn.rnn_cell.GRUCell(4*encoding_dim)
		infer_state = infer_gru.zero_state(batch_size, tf.float32)
		for iter_step in range(8):
			if iter_step > 0:
				scope.reuse_variables()
 
			_, q_glimpse = glimpse(W_q, b_q, encoded_Q, infer_state)
			d_attention, d_glimpse = glimpse(W_d, b_d, encoded_X, tf.concat_v2([infer_state, q_glimpse], 1))
 
			gate_concat = tf.concat_v2([infer_state, q_glimpse, d_glimpse, q_glimpse * d_glimpse], 1)
 
			r_d = tf.sigmoid(tf.matmul(gate_concat, g_d))
			r_d = tf.nn.dropout(r_d, keep_prob)
			r_q = tf.sigmoid(tf.matmul(gate_concat, g_q))
			r_q = tf.nn.dropout(r_q, keep_prob)
 
			combined_gated_glimpse = tf.concat_v2([r_q * q_glimpse, r_d * d_glimpse], 1)
			_, infer_state = infer_gru(combined_gated_glimpse, infer_state)
 
	return tf.to_float(tf.sign(tf.abs(X))) * d_attention
 
def train_neural_attention():
	X_attentions = neural_attention()
	loss = -tf.reduce_mean(tf.log(tf.reduce_sum(tf.to_float(tf.equal(tf.expand_dims(A, -1), X)) * X_attentions, 1) + tf.constant(0.00001)))
 
	optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
	grads_and_vars = optimizer.compute_gradients(loss)
	capped_grads_and_vars = [(tf.clip_by_norm(g, 5), v) for g,v in grads_and_vars]
	train_op = optimizer.apply_gradients(capped_grads_and_vars)
 
	saver = tf.train.Saver()
	with tf.Session() as sess:
		sess.run(tf.global_variables_initializer())
 
		# writer = tf.summary.FileWriter()
		# 恢复前一次训练
		ckpt = tf.train.get_checkpoint_state('.')
		if ckpt != None:
			print(ckpt.model_checkpoint_path)
			saver.restore(sess, ckpt.model_checkpoint_path)
		else:
			print("没找到模型")
 
		for step in range(20000):
			train_x, train_q, train_a = get_next_batch()
			loss_, _ = sess.run([loss, train_op], feed_dict={X:train_x, Q:train_q, A:train_a, keep_prob:0.7})
			print(loss_)
 
			# 保存模型并计算准确率
			if step % 1000 == 0:
				path = saver.save(sess, 'machine_reading.model', global_step=step)
				print(path)
 
				test_x, test_q, test_a = get_test_batch()
				test_x, test_q, test_a = np.array(test_x[:batch_size]), np.array(test_q[:batch_size]), np.array(test_a[:batch_size])
				attentions = sess.run(X_attentions, feed_dict={X:test_x, Q:test_q, keep_prob:1.})
				correct_count = 0
				for x in range(test_x.shape[0]):
					probs = defaultdict(int)
					for idx, word in enumerate(test_x[x,:]):
						probs[word] += attentions[x, idx]
					guess = max(probs, key=probs.get)
					if guess == test_a[x]:
						correct_count += 1
				print(correct_count / test_x.shape[0])
 
train_neural_attention()

我只想说,这个东西比我水平高!

Share the post "TensorFlow练习25: 使用深度学习做阅读理解+完形填空"

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年01月14日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 我先给你出一道阅读理解
  • 使用的数据集
  • 数据预处理
  • 训练
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档