前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >是AI就躲个飞机-纯Python实现人工智能

是AI就躲个飞机-纯Python实现人工智能

作者头像
MachineLP
发布2018-01-09 11:29:22
2.3K0
发布2018-01-09 11:29:22
举报
文章被收录于专栏:小鹏的专栏

代码下载:Here

很久以前微信流行过一个小游戏:打飞机,这个游戏简单又无聊。在2017年来临之际,我就实现一个超级弱智的人工智能(AI),这货可以躲避从屏幕上方飞来的飞机。本帖只使用纯Python实现,不依赖任何高级库。

本文的AI基于neuro-evolution,首先简单科普一下neuro-evolution。从neuro-evolution这个名字就可以看出它由两部分组成-neuro and evolution,它是使用进化算法(遗传算法是进化算法的一种)提升人工神经网络的机器学习技术,其实就是用进化算法改进并选出最优的神经网络。

neuro-evolution

定义一些变量:

代码语言:javascript
复制
import math
import random
 
# 神经网络3层, 1个隐藏层; 4个input和1个output
network = [4, [16], 1]
# 遗传算法相关
population = 50
elitism = 0.2 
random_behaviour = 0.1
mutation_rate = 0.5
mutation_range = 2
historic = 0
low_historic = False
score_sort = -1
n_child = 1

定义神经网络:

代码语言:javascript
复制
# 激活函数
def sigmoid(z):
	return 1.0/(1.0+math.exp(-z))
# random number
def random_clamped():
	return random.random()*2-1
 
# "神经元"
class Neuron():
	def __init__(self):
		self.biase = 0
		self.weights = []
 
	def init_weights(self, n):
		self.weights = []
		for i in range(n):
			self.weights.append(random_clamped())
	def __repr__(self):
		return 'Neuron weight size:{}  biase value:{}'.format(len(self.weights), self.biase)
 
# 层
class Layer():
	def __init__(self, index):
		self.index = index
		self.neurons = []
 
	def init_neurons(self, n_neuron, n_input):
		self.neurons = []
		for i in range(n_neuron):
			neuron = Neuron()
			neuron.init_weights(n_input)
			self.neurons.append(neuron)
 
	def __repr__(self):
		return 'Layer ID:{}  Layer neuron size:{}'.format(self.index, len(self.neurons))
 
# 神经网络
class NeuroNetwork():
	def __init__(self):
		self.layers = []
 
	# input:输入层神经元数 hiddens:隐藏层 output:输出层神经元数
	def init_neuro_network(self, input, hiddens , output):
		index = 0
		previous_neurons = 0
		# input
		layer = Layer(index)
		layer.init_neurons(input, previous_neurons)
		previous_neurons = input
		self.layers.append(layer)
		index += 1
		# hiddens
		for i in range(len(hiddens)):
			layer = Layer(index)
			layer.init_neurons(hiddens[i], previous_neurons)
			previous_neurons = hiddens[i]
			self.layers.append(layer)
			index += 1
		# output
		layer = Layer(index)
		layer.init_neurons(output, previous_neurons)
		self.layers.append(layer)
 
	def get_weights(self):
		data = { 'network':[], 'weights':[] }
		for layer in self.layers:
			data['network'].append(len(layer.neurons))
			for neuron in layer.neurons:
				for weight in neuron.weights:
					data['weights'].append(weight)
		return data
 
	def set_weights(self, data):
		previous_neurons = 0
		index = 0
		index_weights = 0
 
		self.layers = []
		for i in data['network']:
			layer = Layer(index)
			layer.init_neurons(i, previous_neurons)
			for j in range(len(layer.neurons)):
				for k in range(len(layer.neurons[j].weights)):
					layer.neurons[j].weights[k] = data['weights'][index_weights]
					index_weights += 1
			previous_neurons = i
			index += 1
			self.layers.append(layer)
 
	# 输入游戏环境中的一些条件(如敌机位置), 返回要执行的操作
	def feed_forward(self, inputs):
		for i in range(len(inputs)):
			self.layers[0].neurons[i].biase = inputs[i]
 
		prev_layer = self.layers[0]
		for i in range(len(self.layers)):
			# 第一层没有weights
			if i == 0:
				continue
			for j in range(len(self.layers[i].neurons)):
				sum = 0
				for k in range(len(prev_layer.neurons)):
					sum += prev_layer.neurons[k].biase * self.layers[i].neurons[j].weights[k]
				self.layers[i].neurons[j].biase = sigmoid(sum)
			prev_layer = self.layers[i]
 
		out = []
		last_layer = self.layers[-1]
		for i in range(len(last_layer.neurons)):
			out.append(last_layer.neurons[i].biase)
		return out
 
	def print_info(self):
		for layer in self.layers:
			print(layer)

遗传算法:

代码语言:javascript
复制
# "基因组"
class Genome():
	def __init__(self, score, network_weights):
		self.score = score
		self.network_weights = network_weights
 
class Generation():
	def __init__(self):
		self.genomes = []
 
	def add_genome(self, genome):
		i = 0
		for i in range(len(self.genomes)):
			if score_sort < 0:
				if genome.score > self.genomes[i].score:
					break
			else:
				if genome.score < self.genomes[i].score:
					break
		self.genomes.insert(i, genome)
 
        # 杂交+突变
	def breed(self, genome1, genome2, n_child):
		datas = []
		for n in range(n_child):
			data = genome1
			for i in range(len(genome2.network_weights['weights'])):
				if random.random() <= 0.5:
					data.network_weights['weights'][i] = genome2.network_weights['weights'][i]
 
			for i in range(len(data.network_weights['weights'])):
				if random.random() <= mutation_rate:
					data.network_weights['weights'][i] += random.random() * mutation_range * 2 - mutation_range
			datas.append(data)
		return datas
 
        # 生成下一代
	def generate_next_generation(self):
		nexts = []
		for i in range(round(elitism*population)):
			if len(nexts) < population:
				nexts.append(self.genomes[i].network_weights)
 
		for i in range(round(random_behaviour*population)):
			n = self.genomes[0].network_weights
			for k in range(len(n['weights'])):
				n['weights'][k] = random_clamped()
			if len(nexts) < population:
				nexts.append(n)
 
		max_n = 0
		while True:
			for i in range(max_n):
				childs = self.breed(self.genomes[i], self.genomes[max_n], n_child if n_child > 0 else 1)
				for c in range(len(childs)):
					nexts.append(childs[c].network_weights)
					if len(nexts) >= population:
						return nexts
			max_n += 1
			if max_n >= len(self.genomes)-1:
				max_n = 0

NeuroEvolution:

代码语言:javascript
复制
class Generations():
	def __init__(self):
		self.generations = []
 
	def first_generation(self):
		out = []
		for i in range(population):
			nn = NeuroNetwork()
			nn.init_neuro_network(network[0], network[1], network[2])
			out.append(nn.get_weights())
		self.generations.append(Generation())
		return out
		
	def next_generation(self):
		if len(self.generations) == 0:
			return False
 
		gen = self.generations[-1].generate_next_generation()
		self.generations.append(Generation())
		return gen
 
	def add_genome(self, genome):
		if len(self.generations) == 0:
			return False
 
		return self.generations[-1].add_genome(genome)
 
class NeuroEvolution():
	def __init__(self):
		self.generations = Generations()
 
	def restart(self):
		self.generations = Generations()
 
	def next_generation(self):
		networks = []
		if len(self.generations.generations) == 0:
			networks = self.generations.first_generation()
		else:
			networks = self.generations.next_generation()
 
		nn = []
		for i in range(len(networks)):
			n = NeuroNetwork()
			n.set_weights(networks[i])
			nn.append(n)
 
		if low_historic:
			if len(self.generations.generations) >= 2:
				genomes = self.generations.generations[len(self.generations.generations) - 2].genomes
				for i in range(genomes):
					genomes[i].network = None
 
		if historic != -1:
			if len(self.generations.generations) > historic+1:
				del self.generations.generations[0:len(self.generations.generations)-(historic+1)]
 
		return nn
 
	def network_score(self, score, network):
		self.generations.add_genome(Genome(score, network.get_weights()))
是AI就躲个飞机
代码语言:javascript
复制
import pygame
import sys
from pygame.locals import *
import random
import math
 
import neuro_evolution
 
BACKGROUND = (200, 200, 200)
SCREEN_SIZE = (320, 480)
 
class Plane():
	def __init__(self, plane_image):
		self.plane_image = plane_image
		self.rect = plane_image.get_rect()
 
		self.width = self.rect[2]
		self.height = self.rect[3]
		self.x = SCREEN_SIZE[0]/2 - self.width/2
		self.y = SCREEN_SIZE[1] - self.height
 
		self.move_x = 0
		self.speed = 2
 
		self.alive = True
 
	def update(self):
		self.x += self.move_x * self.speed
 
	def draw(self, screen):
		screen.blit(self.plane_image, (self.x, self.y, self.width, self.height))
 
	def is_dead(self, enemes):
		if self.x < -self.width or self.x + self.width > SCREEN_SIZE[0]+self.width:
			return True
 
		for eneme in enemes:
			if self.collision(eneme):
				return True
		return False
 
	def collision(self, eneme):
		if not (self.x > eneme.x + eneme.width or self.x + self.width < eneme.x or self.y > eneme.y + eneme.height or self.y + self.height < eneme.y):
			return True
		else:
			return False
 
	def get_inputs_values(self, enemes, input_size=4):
		inputs = []
 
		for i in range(input_size):
			inputs.append(0.0)
 
		inputs[0] = (self.x*1.0 / SCREEN_SIZE[0])
		index = 1
		for eneme in enemes:
			inputs[index] = eneme.x*1.0 / SCREEN_SIZE[0]
			index += 1
			inputs[index] = eneme.y*1.0 / SCREEN_SIZE[1]
			index += 1
		#if len(enemes) > 0:
			#distance = math.sqrt(math.pow(enemes[0].x + enemes[0].width/2 - self.x + self.width/2, 2) + math.pow(enemes[0].y + enemes[0].height/2 - self.y + self.height/2, 2));
		if len(enemes) > 0 and self.x < enemes[0].x:
			inputs[index] = -1.0
			index += 1
		else:
			inputs[index] = 1.0
 
		return inputs
 
class Enemy():
	def __init__(self, enemy_image):
		self.enemy_image = enemy_image
		self.rect = enemy_image.get_rect()
 
		self.width = self.rect[2]
		self.height = self.rect[3]
		self.x = random.choice(range(0, int(SCREEN_SIZE[0] - self.width/2), 71))
		self.y = 0
 
	def update(self):
		self.y += 6
 
	def draw(self, screen):
		screen.blit(self.enemy_image, (self.x, self.y, self.width, self.height))
 
	def is_out(self):
		return True if self.y >= SCREEN_SIZE[1] else False
 
class Game():
	def __init__(self):
		pygame.init()
		self.screen = pygame.display.set_mode(SCREEN_SIZE)
		self.clock = pygame.time.Clock()
		pygame.display.set_caption('是AI就躲个飞机')
 
		self.ai = neuro_evolution.NeuroEvolution()
		self.generation = 0
 
		self.max_enemes = 1
                # 加载飞机、敌机图片
		self.plane_image = pygame.image.load('plane.png').convert_alpha()
		self.enemy_image = pygame.image.load('enemy.png').convert_alpha()
 
	def start(self):
		self.score = 0
		self.planes = []
		self.enemes = []
 
		self.gen = self.ai.next_generation()
		for i in range(len(self.gen)):
			plane = Plane(self.plane_image)
			self.planes.append(plane)
 
		self.generation += 1
		self.alives = len(self.planes)
 
	def update(self, screen):
		for i in range(len(self.planes)):
			if self.planes[i].alive:
				inputs = self.planes[i].get_inputs_values(self.enemes)
				res = self.gen[i].feed_forward(inputs)
				if res[0] < 0.45:
					self.planes[i].move_x = -1
				elif res[0] > 0.55:
					self.planes[i].move_x = 1
 
 
				self.planes[i].update()
				self.planes[i].draw(screen)
 
				if self.planes[i].is_dead(self.enemes) == True:
					self.planes[i].alive = False
					self.alives -= 1
					self.ai.network_score(self.score, self.gen[i])
					if self.is_ai_all_dead():
						self.start()
 
		
		self.gen_enemes()
 
		for i in range(len(self.enemes)):
			self.enemes[i].update()
			self.enemes[i].draw(screen)
			if self.enemes[i].is_out():
				del self.enemes[i]
				break
 
		self.score += 1
 
		print("alive:{}, generation:{}, score:{}".format(self.alives, self.generation, self.score), end='\r')
 
	def run(self, FPS=1000):
		while True:
			for event in pygame.event.get():
				if event.type == QUIT:
					pygame.quit()
					sys.exit()
 
			self.screen.fill(BACKGROUND)
 
			self.update(self.screen)
 
			pygame.display.update()
			self.clock.tick(FPS)
 
	def gen_enemes(self):
		if len(self.enemes) < self.max_enemes:
			enemy = Enemy(self.enemy_image)
			self.enemes.append(enemy)
 
	def is_ai_all_dead(self):
		for plane in self.planes:
			if plane.alive:
				return False
		return True
 
 
game = Game()
game.start()
game.run()
AI的工作逻辑

假设你是AI,你首先繁殖一个种群(50个个体),开始的个体大都是歪瓜裂枣(上来就被敌机撞)。但是,即使是歪瓜裂枣也有表现好的,在下一代,你会使用这些表现好的再繁殖一个种群,经过代代相传,存活下来的个体会越来越优秀。其实就是仿达尔文进化论,种群->自然选择->优秀个体->杂交、变异->种群->循环n世代。

ai开始时候的表现:

是AI就躲个飞机 - 纯Python实现人工智能
是AI就躲个飞机 - 纯Python实现人工智能

图片被拉扁了 sorry

经过几百代之后,ai开始娱乐的躲飞机:

是AI就躲个飞机 - 纯Python实现人工智能
是AI就躲个飞机 - 纯Python实现人工智能

ps.祝大家新年快乐,感觉我又浪费了一年。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年01月12日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • neuro-evolution
  • 是AI就躲个飞机
  • AI的工作逻辑
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档