前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据结构 图

数据结构 图

作者头像
Kindear
发布2018-01-15 15:30:54
1.7K0
发布2018-01-15 15:30:54
举报

1-1

无向连通图至少有一个顶点的度为1

错误:

无向连通图考点:

1. 每条边连接两个顶点,所有顶点的度之和等于边数的2倍

2.记住两个特殊的无相连通图模型:

A:

B:

1-2

用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。

错误:

这是邻接矩阵的特性。

邻接表存储结构

2-1

若无向图G =(V,E)中含10个顶点,要保证图G在任何情况下都是连通的,则需要的边数最少是

竞赛图(强连通)边数 = n(n-1)/2 = 45;

从其中任意拿走一个点,边数 -9,这个时候,任意增加一条边,这条边都是与多余的那个点相连的,此时图一定联通,ans = 45 - 9+1 = 37;

2-2

给定一个有向图的邻接表如下图,则该图有__个强连通分量

1.强连通分量:有向图中的极大强连通子图称作有向图的强连通分量. 2.第1点中的极大强连通子图:把图的所有结点用最少的边将其连接起来的子图. 3.一个顶点也是极大强连通子图.

 如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通

画图如下

 单个顶点也是强联通分量,或者是两两有路径连接的图的子集也是强联通分量;

2-6

如果G是一个有36条边的非连通无向图,那么该图顶点个数最少为多少?

无向竞赛图阶:

1

2

3

4

5

6

7

8

9

边数:

0

1

3

6

10

15

21

28

36

        有向图就*2;

 对于36条边来说,9个点一定是竞赛图:强连通图十个点,可以满足,一个点被孤立,成为非强连通图的情况;

2-14

        下列关于无向连通图特征的叙述中,正确的是: (2分)

  1. 所有顶点的度之和为偶数
  2. 边数大于顶点个数减1
  3. 至少有一个顶点的度为1

这道题需要对连通图的性质理解,

1.度 = 2*边数 ,显然是偶数

2.边数大于等于顶点个数减一

3.sample,最上面让记住的两个图之一

2-19

一个有N个顶点的强连通图至少有多少条边?

最少还是最上面的例子,三角形,3个点,3条边,方向都为一个时针的方向,

想让边数多,那就选择竞赛图,最多n*(n+1)

2-24

下列选项中,不是下图深度优先搜索序列的是

脑子代码任选一个跑一下;

2-29

图的广度优先遍历类似于二叉树的:

前序:一条路走到黑(dfs)

层次:雨露均沾(bfs)

2-37

给定一有向图的邻接表如下。若从v1开始利用此邻接表做广度优先搜索得到的顶点序列为:{v1, v3, v2, v4, v5},则该邻接表中顺序填空的结果应为

画图:

邻接表:

解释下:5 - 2 之间右边, 5-4之间有边,不是 5 -2 有边 , 2 - 4有边!

邻接矩阵存储图的深度优先遍历
邻接表存储图的广度优先遍历

2-1

给定有权无向图的邻接矩阵如下,其最小生成树的总权重是:

 这种题目,推荐的做法是跑代码,容我实现下10:58:34

11:20:28

 没毛病,代码贴上:

#include<bits/stdc++.h>
using  namespace std;
#define INF 0x3f3f3f3f
const int maxn = 117;
int m[maxn][maxn];
int vis[maxn], low[maxn];
/*
对于这道题目来将,m就是临接矩阵,vis是访问标记数组,low是最短距离数组
*/
int n;
int prim()
{
    vis[1] = 1;
    int sum = 0;
    int pos, minn;
    pos = 1;
    for(int i = 1; i <= n; i++)
    {
        low[i] = m[pos][i];
    }
    /*
    先把第一个点放到树里,然后找到剩下的点到这个点的距离
    */
    for(int i = 1; i < n; i++)//循环遍历 n-1 次数,把点全部加入!
    {
        minn = INF;
        for(int j = 1; j <= n; j++)
        {
            if(!vis[j] && minn > low[j]) //没有进树的节点,并且这个节点到树里面 点距离最近,拉进来
            {
                minn = low[j];
                pos = j;
            }
        }
        sum += minn;
        vis[pos] = 1;
        for(int j = 1; j <= n; j++)
        {
            if(!vis[j] && low[j] > m[pos][j])//用新加入的点,更新low值
            {
                low[j] = m[pos][j];
            }
        }
    }
    return sum;
}
void init()
{
    memset(vis,0,sizeof(vis));
    memset(low,0,sizeof(low));
    for(int i = 1; i <= n ;i++ )
    for(int j = 1; j <= n; j++)
        m[i][j] = INF;
}
void in_map()
{
    printf("输入邻接矩阵阶:\n");
    scanf("%d",&n);
    printf("输入邻接矩阵,无穷用 -1代表!\n");
    int t;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    {
        scanf("%d",&t);
        m[i][j] = (t==-1?INF:t);
    }
}
int main()
{
    init();
    in_map();
    printf("%d",prim());
}

 翘代码5分钟,输入2分钟差不多; = 7分钟;

7-4 排座位(25 分)

布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。

输入格式:

输入第一行给出3个正整数:N(≤100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系,其中关系为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。

这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。

输出格式:

对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem;如果他们之间并不是朋友,但也不敌对,则输出OK;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...;如果他们之间只有敌对关系,则输出No way

#include<bits/stdc++.h>
using namespace std;
int father[105];
int maps[110][110];
int n, m , k;
int finds(int x)
{
    if(x!=father[x]) father[x]=finds(father[x]);
    return father[x];
}
void combine(int x,int y,int t)
{
    if(t==1)
    {
        int a=finds(x);
    int b=finds(y);
    if(a==b)
        return;
    if(a<b)
        father[b]=a;
    else
        father[a]=b;
    }
    else
    {
        maps[x][y] = maps[y][x] = -1;
    }
}
void init()
{
    for(int i=0;i<=n;i++)
      father[i]=i;
}
int main()
{
   scanf("%d%d%d",&n,&m,&k);
   init();
   memset(maps,0,sizeof(maps));
   for(int i=1;i<=m;i++)
   {
       int x,y,t;
       scanf("%d%d%d",&x,&y,&t);
       combine(x,y,t);
   }
   int x,y;
   for(int i=0;i<k;i++)
   {
        cin>>x>>y;
        if(finds(x)==finds(y)&&maps[x][y]!=-1)
        {
            printf("No problem\n");
        }
        else if(finds(x)==finds(y)&&maps[x][y]==-1)
        {
            printf("OK but...\n");
        }
        else if(finds(x)!=finds(y)&&maps[x][y]==-1)
        {
            printf("No way\n");
        }
        else
            printf("OK\n");
   }
}

 最短路,所有的题目,基于代码:

Path & Dijkstra

由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。

(1) 选择一个入度为0的顶点并输出之;

(2) 从网中删除此顶点及所有出边

循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列

具体还是需要用具体题目来理解。

#include <bits/stdc++.h>
using namespace std;
#define maxn 100//可以根据题目条件进行更改
int edge[maxn][maxn];
int book[maxn];
int point_num;
int edge_num;
bool check_point(int v)//确定这个点是不是没有入度;
{
    for(int i=1;i<=point_num;i++)
        if(edge[i][v]==1&&(i!=v))//如果有入度,返回false,i==v时没有啥实际意义
        return false;
    return true;
}
void del_edge(int v)//删除以这个点为起始点的所有边
{
    fill(edge[v],edge[v]+point_num,0);//fill灵活用法,用for循环效果一样,时间复杂度相同
}
int main()
{
    memset(book,0,sizeof(book));
    scanf("%d",&point_num);
    scanf("%d",&edge_num);//点的个数,边的个数,设为宏观变量,比较好操作
    memset(edge,0,sizeof(edge));
     
    for(int i=1;i<=edge_num;i++)
    {
        int s_point,e_point;
        scanf("%d%d",&s_point,&e_point);
        edge[s_point][e_point]=1;
    }
    int i;//下面循环代码肯定是能优化的,不过我一时半会想不起来,欢迎留言,私信我
    for(;i<=point_num;i++)
    {
        if(check_point(i)&&book[i]==0)
        {
            book[i]=1;
            cout<<i<<" ";
            del_edge(i);//删除bian
            i=1;
        }
    }
    for(int i=1;i<=point_num;i++)
    {
        if(book[i]==0)
            cout<<i<<endl;
    }//扫尾工作,最后可能会留下一个点;输出格式自己搞!
}

2-5

对下图进行拓扑排序,可以得到不同的拓扑序列的个数是: 

1.    a入度为 0 ,出 a

2.   b 和 e 入度为 0

3.    假设出 e , 后面只有一种方法 b c d

4.    假设出 b ,然后可以选择出 c/e   ,出 c,然后一定是 e d,出 e ,然后一定是 c d

总 3 种

题目:Topo排序

理解,不推荐记忆,非重要考点:  关键路径

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-12-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 邻接矩阵存储图的深度优先遍历
  • 邻接表存储图的广度优先遍历
  • 7-4 排座位(25 分)
  • 输入格式:
  • 输出格式:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档