二分查找法的实现和应用汇总

在学习算法的过程中,我们除了要了解某个算法的基本原理、实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度。在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度。

时间复杂度按优劣排差不多集中在:

O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n)

到目前位置,似乎我学到的算法中,时间复杂度是O(log n),好像就数二分查找法,其他的诸如排序算法都是 O(n log n)或者O(n2)。但是也正是因为有二分的 O(log n), 才让很多 O(n2)缩减到只要O(n log n)。

关于二分查找法

二分查找法主要是解决在“一堆数中找出指定的数”这类问题。

而想要应用二分查找法,这“一堆数”必须有一下特征:

  • 存储在数组中
  • 有序排列

所以如果是用链表存储的,就无法在其上应用二分查找法了。(曽在面试被问二分查找法可以什么数据结构上使用:数组?链表?)

至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同。

二分查找法的基本实现

二分查找法在算法家族大类中属于“分治法”,分治法基本都可以用递归来实现的,二分查找法的递归实现如下:

int bsearch(int array[], int low, int high, int target)
{
    if (low > high) return -1;
    
    int mid = (low + high)/2;
    if (array[mid]> target)
        return    binarysearch(array, low, mid -1, target);
    if (array[mid]< target)
        return    binarysearch(array, mid+1, high, target);
    
    //if (midValue == target)
        return mid;
}

不过所有的递归都可以自行定义stack来解递归,所以二分查找法也可以不用递归实现,而且它的非递归实现甚至可以不用栈,因为二分的递归其实是尾递归,它不关心递归前的所有信息。

int bsearchWithoutRecursion(int array[], int low, int high, int target)
{
    while(low <= high)
    {
        int mid = (low + high)/2;
        if (array[mid] > target)
            high = mid - 1;
        else if (array[mid] < target)
            low = mid + 1;
        else //find the target
            return mid;
    }
    //the array does not contain the target
    return -1;
}

只用小于比较(<)实现二分查找法

在前面的二分查找实现中,我们既用到了小于比较(<)也用到了大于比较(>),也可能还需要相等比较(==)。

而实际上我们只需要一个小于比较(<)就可以。因为错逻辑上讲a>b和b<a应该是有相当的逻辑值;而a==b则是等价于 !((a<b)||(b<a)),也就是说a既不小于b,也不大于b。

当然在程序的世界里, 这种关系逻辑其实并不是完全正确。另外,C++还允许对对象进行运算符的重载,因此开发人员完全可以随意设计和实现这些关系运算符的逻辑值。

不过在整型数据面前,这些关系运算符之间的逻辑关系还是成立的,而且在开发过程中,我们还是会遵循这些逻辑等价关系来重载关系运算符。

干嘛要搞得那么羞涩,只用一个关系运算符呢?因为这样可以为二分查找法写一个template,又能减少对目标对象的要求。模板会是这样的:

template <typename T, typename V>
inline int BSearch(T& array, int low, int high, V& target)
{
    while(!(high < low))
    {
        int mid = (low + high)/2;
        if (target < array[mid])
            high = mid - 1;
        else if (array[mid] < target)
            low = mid + 1;
        else //find the target
            return mid;
    }
    //the array does not contain the target
    return -1; 
}

我们只需要求target的类型V有重载小于运算符就可以。而对于V的集合类型T,则需要有[]运算符的重载。当然其内部实现必须是O(1)的复杂度,否则也就失去了二分查找的效率。

用二分查找法找寻边界值

之前的都是在数组中找到一个数要与目标相等,如果不存在则返回-1。我们也可以用二分查找法找寻边界值,也就是说在有序数组中找到“正好大于(小于)目标数”的那个数。

用数学的表述方式就是:

     在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。

举例来说:

给予数组和目标数

int array = {2, 3, 5, 7, 11, 13, 17};
int target = 7;

那么上界值应该是11,因为它“刚刚好”大于7;下届值则是5,因为它“刚刚好”小于7。

用二分查找法找寻上届

//Find the fisrt element, whose value is larger than target, in a sorted array 
int BSearchUpperBound(int array[], int low, int high, int target)
{
    //Array is empty or target is larger than any every element in array 
    if(low > high || target >= array[high]) return -1;
    
    int mid = (low + high) / 2;
    while (high > low)
    {
        if (array[mid] > target)
            high = mid;
        else
            low = mid + 1;
        
        mid = (low + high) / 2;
    }

    return mid;
}

与精确查找不同之处在于,精确查找分成三类:大于小于等于(目标数)。而界限查找则分成了两类:大于不大于

如果当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引,也因此if (array[mid] > target)时 high=mid; 而没有减1。

用二分查找法找寻下届

//Find the last element, whose value is less than target, in a sorted array 
int BSearchLowerBound(int array[], int low, int high, int target)
{
    //Array is empty or target is less than any every element in array
    if(high < low  || target <= array[low]) return -1;
    
    int mid = (low + high + 1) / 2; //make mid lean to large side
    while (low < high)
    {
        if (array[mid] < target)
            low = mid;
        else
            high = mid - 1;
        
        mid = (low + high + 1) / 2;
    }

    return mid;
}

下届寻找基本与上届相同,需要注意的是在取中间索引时,使用了向上取整。若同之前一样使用向下取整,那么当low == high-1,而array[low] 又小于 target时就会形成死循环。因为low无法往上爬超过high。

这两个实现都是找严格界限,也就是要大于或者小于。如果要找松散界限,也就是找到大于等于或者小于等于的值(即包含自身),只要对代码稍作修改就好了:

去掉判断数组边界的等号:

target >= array[high]改为 target > array[high]

在与中间值的比较中加上等号:

array[mid] > target改为array[mid] >= target

用二分查找法找寻区域

之前我们使用二分查找法时,都是基于数组中的元素各不相同。假如存在重复数据,而数组依然有序,那么我们还是可以用二分查找法判别目标数是否存在。不过,返回的index就只能是随机的重复数据中的某一个。

此时,我们会希望知道有多少个目标数存在。或者说我们希望数组的区域。

结合前面的界限查找,我们只要找到目标数的严格上届和严格下届,那么界限之间(不包括界限)的数据就是目标数的区域了。

//return type: pair<int, int>
//the fisrt value indicate the begining of range,
//the second value indicate the end of range.
//If target is not find, (-1,-1) will be returned
pair<int, int> SearchRange(int A[], int n, int target) 
{
    pair<int, int> r(-1, -1);
    if (n <= 0) return r;
    
    int lower = BSearchLowerBound(A, 0, n-1, target);
    lower = lower + 1; //move to next element
    
    if(A[lower] == target)
        r.first = lower;
    else //target is not in the array
        return r;
    
    int upper = BSearchUpperBound(A, 0, n-1, target);
    upper = upper < 0? (n-1):(upper - 1); //move to previous element
    
    //since in previous search we had check whether the target is
    //in the array or not, we do not need to check it here again
    r.second = upper;
    
    return r;
}

它的时间复杂度是两次二分查找所用时间的和,也就是O(log n) + O(log n),最后还是O(log n)。

在轮转后的有序数组上应用二分查找法

之前我们说过二分法是要应用在有序的数组上,如果是无序的,那么比较和二分就没有意义了。

不过还有一种特殊的数组上也同样可以应用,那就是“轮转后的有序数组(Rotated Sorted Array)”。它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。

下边就是二分查找法在轮转后的有序数组上的实现(假设数组中不存在相同的元素)

int SearchInRotatedSortedArray(int array[], int low, int high, int target) 
{
    while(low <= high)
    {
        int mid = (low + high) / 2;
        if (target < array[mid])
            if (array[mid] < array[high])//the higher part is sorted
                high = mid - 1; //the target would only be in lower part
            else //the lower part is sorted
                if(target < array[low])//the target is less than all elements in low part
                    low = mid + 1;
                else
                    high = mid - 1;

        else if(array[mid] < target)
            if (array[low] < array[mid])// the lower part is sorted
                low = mid + 1; //the target would only be in higher part
            else //the higher part is sorted
               if (array[high] < target)//the target is larger than all elements in higher part
                    high = mid - 1;
                else
                    low = mid + 1;
        else //if(array[mid] == target)
            return mid;
    }

    return -1;
}

对比普通的二分查找法,为了确定目标数会落在二分后的那个部分,我们需要更多的判定条件。但是我们还是实现了O(log n)的目标。

二分查找法的缺陷

二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组

数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据和云计算技术

二分查找

算法是基础,小蓝同学准备些总结一系列算法分享给大家,这是第5篇《二分查找》,非常赞!希望对大家有帮助,大家会喜欢! 前面系列文章: 归并排序 #算法基础#...

374100
来自专栏owent

线段树相关问题 (引用 PKU POJ题目) 整理

如果(a < b – 1){分别计算a、b的次数和线段树[a + 1, b – 1)的次数,取大(小)的一项};

23920
来自专栏小樱的经验随笔

浅谈数据结构之主席树(线段树进阶版)

今天看了点主席树的概念,加上飞哥上次讲的,目前对主席树有了大致的了解,简单谈谈吧,不讲代码,只讲思路,日后贴题!       Orz高级数据结构发明者主席!!最...

30250
来自专栏fangyangcoder

算法导论中的四种基本排序

                                                        by方阳

14820
来自专栏Spark学习技巧

海量数据处理之bitmap

本文将讲述Bit-Map算法的相关原理,Bit-Map算法的一些利用场景,例如BitMap解决海量数据寻找重复、判断个别元素是否在海量数据当中等问题.最后说说B...

17720
来自专栏智能算法

前端面试中的常见的算法问题

作者:Jack Pu 链接:www.jackpu.com/qian-duan-mian-shi-zhong-de-chang-jian-de-suan-fa-w...

53580
来自专栏计算机视觉与深度学习基础

Leetcode 287. Find the Duplicate Number

Given an array nums containing n + 1 integers where each integer is between 1 a...

27850
来自专栏于晓飞的专栏

读 Java TimSort算法 源码 笔记

本来准备看Java容器源码的。但是看到一开始发现Arrays这个类我不是很熟,就顺便把Arrays这个类给看了。Arrays类没有什么架构与难点,但Arrays...

14720
来自专栏猿人谷

【不做标题党,只做纯干货】HashMap在jdk1.7和1.8中的实现

Java集合类的源码是深入学习Java非常好的素材,源码里很多优雅的写法和思路,会让人叹为观止。HashMap的源码尤为经典,是非常值得去深入研究的,jdk1....

12930
来自专栏好好学java的技术栈

“365算法每日学计划”:java语言基础题目及解答(11-15打卡)

自从开始做公众号开始,就一直在思考,怎么把算法的训练做好,因为思海同学在算法这方面的掌握确实还不够。因此,我现在想做一个“365算法每日学计划”。

14010

扫码关注云+社区

领取腾讯云代金券