教你用一行Python代码实现并行(附代码)

来源:编程派

翻译:caspar

译文:https://segmentfault.com/a/1190000000414339

原文:https://medium.com/building-things-on-the-internet/40e9b2b36148

本文长度为5200字,建议阅读8分钟

本文教你通过一行Python实现并行化。

Python在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和GIL,我觉得错误的教学指导才是主要问题。常见的经典Python多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。

传统的例子

简单搜索下"Python多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:

#Example.py

哈,看起来有些像 Java 不是吗?

我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

问题在于…

首先,你需要一个样板类; 其次,你需要一个队列来传递对象; 而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

worker越多,问题越多

按照这一思路,你现在需要一个worker线程的线程池。下面是一篇IBM经典教程中的例子——在进行网页检索时通过多线程进行加速。

#Example2.py

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的join操作。这还只是开始……

至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

何不试试 map

map这一小巧精致的函数是简捷实现Python程序并行化的关键。map源于Lisp这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

    urls = ['http://www.yahoo.com', 'http://www.reddit.com']

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

results = []

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

为什么这很重要呢?这是因为借助正确的库,map可以轻松实现并行化操作。

在Python中有个两个库包含了map函数: multiprocessing和它鲜为人知的子库 multiprocessing.dummy.

这里多扯两句:multiprocessing.dummy? mltiprocessing库的线程版克隆?这是虾米?即便在multiprocessing库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!

dummy是multiprocessing模块的完整克隆,唯一的不同在于multiprocessing作用于进程,而dummy模块作用于线程(因此也包括了Python所有常见的多线程限制)。 所以替换使用这两个库异常容易。你可以针对IO密集型任务和CPU密集型任务来选择不同的库。

动手尝试

使用下面的两行代码来引用包含并行化map函数的库:

from multiprocessing import Pool

实例化 Pool 对象:

pool = ThreadPool()

这条简单的语句替代了example2.py中buildworkerpool函数7行代码的工作。它生成了一系列的worker线程并完成初始化工作、将它们储存在变量中以方便访问。

Pool对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器CPU的核数。

一般来说,执行CPU密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好Pool对象后,并行化的程序便呼之欲出了。我们来看看改写后的example2.py

import urllib2 

实际起作用的代码只有4行,其中只有一行是关键的。map函数轻而易举的取代了前文中超过40行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。

# results = [] 

结果:

#        Single thread:  14.4 Seconds 

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于9带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图 这是一个CPU密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os 

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理6000张图片需要花费27.9秒。

如果我们使用map函数来代替for循环:

import os 

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为CPU密集型任务和IO密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于map函数并不支持手动线程管理,反而使得相关的debug工作也变得异常简单。

到这里,我们就实现了(基本)通过一行Python实现并行化。

原文发布于微信公众号 - 数据派THU(DatapiTHU)

原文发表时间:2018-01-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏灯塔大数据

技术 | Python从零开始系列连载(十四)

导读为了解答大家初学Python时遇到各种常见问题,小灯塔特地整理了一系列从零开始的入门到熟练的系列连载,每周五准时推出,欢迎大家学积极学习转载~

11920
来自专栏aCloudDeveloper

python学习笔记一

之前看过一本100多页的《python简明教程》,都是些非常简单的语法,现在到真正用的时候根本无从下手,所以,重新捧起一本《python学习手册》,1000多页...

25070
来自专栏java学习

学习java需要会哪些知识才能够去应聘工作?

Java基础 | 数据库 | Android | 学习视频 | 学习资料下载 按照我去培训机构的学习经历,给初学还有自学Java 的同学一个基本的学习脉络,希望...

39060
来自专栏云计算教程系列

如何在Python 3中安装pygame并创建用于开发游戏的模板

Pygame库是专门为了帮助您做出的游戏和其他多媒体应用Python编程语言的一个开放源代码模块。pygame 构建于高度可移植的SDL(Simple Dire...

86620
来自专栏哲学驱动设计

使用Repository模式支持产品的客户化

    本篇博客简单描述了Repository模式在OEA中的应用。 不使用Repository时的问题     OEA框架中使用了DDD的思想,面向领域对象进...

21350
来自专栏ChaMd5安全团队

zctf web100的简单分析

zctf web100的简单分析 From ChaMd5安全团队核心成员 Pcat web100 xctf2017第二站的zctf,web100的链接点开之后...

376150
来自专栏架构师小秘圈

你所不知道的库存超限做法

作者:程序诗人,来自:cnblogs.com/scy251147 零,题记 在互联网企业中,限购的做法,多种多样,有的别出心裁,有的因循守旧,但是种种做法皆想达...

35160
来自专栏Linyb极客之路

Java源码跟踪阅读技巧

本文基于Eclipse IDE,我们每天都使用的IDE其实提供了很多强大的功能,掌握它们,往往能够事半功倍。

14140
来自专栏编程

一行 Python 代码实现并行

译者:caspar 译文:https://segmentfault.com/a/1190000000414339 原文:https://medium.com/b...

29890
来自专栏信安之路

漏洞分析之Typecho二连爆

这段时间 Typecho 在十几天之内连续爆了两个最高可 getshell 的洞,先是 SSRF 可打内网,再是反序列化直接前台 getshell ……安全性这...

22800

扫码关注云+社区

领取腾讯云代金券