科普 | 12个关键词,告诉你到底什么是机器学习

随着人工智能(AI)技术对各行各业有越来越深入的影响,我们也更多地在新闻或报告中听到“机器学习”、“深度学习”、“增强学习”、“神经网络”等词汇,对于非专业人士来说略为玄幻。这篇文章为读者梳理了包括这些在内的12个关键词,希望帮助读者更清晰地理解,这项人工智能技术的内涵和潜能。

1

机器学习

汤姆·米歇尔教授任职于卡内基梅陇大学计算机学院、机器学习系,根据他在《机器学习》一书中的定义,机器学习是“研究如何打造可以根据经验自动改善的计算机程序”。机器学习在本质上来说是跨学科的,使用了计算机科学、统计学和人工智能以及其他学科的知识。机器学习研究的主要产物是算法,可以帮助基于经验的自动改善。这些算法可以在各个行业有广泛应用,包括计算机视觉、人工智能和数据挖掘。

2

分类

分类的含义是,打造模型,将数据分类进入不同的类别。这些模型的打造方式,是输入一个训练数据库,其中有预先标记好的类别,供算法进行学习。然后,在模型中输入类别未经标记的数据库,让模型基于它从训练数据库中所学到的知识,来预测新数据的类别。

因为这类的算法需要明确的类别标记,因此,分类算是“监督学习”的一种形式。

3

回归

回归是与分类紧密联系在一起的。分类是预测离散的类别,而回归则适用的情况,是当预测“类别”由连续的数字组成。线性回归就是回归技术的一个例子。

4

聚集

聚集是用来分析不含有预先标记过的类别的数据,甚至连类别特性都没有标记过。数据个体的分组原则是这样的一个概念:最大化组内相似度、最小化组与组之间的相似度。这就出现了聚集算法,识别非常相似的数据并将其放在一组,而未分组的数据之间则没那么相似。K-means聚集也许是聚集算法中最著名的例子。

由于聚集不需要预先将类别进行标记,它算是“无监督学习”的一种形式,意味着算法通过观察进行学习,而不是通过案例进行学习。

5

关联

要解释关联,最简单的办法是引入“购物篮分析”,这是一个比较著名的典型例子。购物篮分析是假设一个购物者在购物篮中放入了各种各样的物品(实体或者虚拟),而目标是识别各种物品之间的关联,并为比较分配支持和置信度测量(编者注:置信度是一个统计学概念,意味着某个样本在总体参数的区间估计)。这其中的价值在于交叉营销和消费者行为分析。关联是购物篮分析的一种概括归纳,与分类相似,除了任何特性都可以在关联中被预测到。 Apriori 算法被称为最知名的关联算法。

关联也属于“无监督学习”的一种形式。

决策树的例子,分步解决并分类的方式带来了树形结构。图片来源: SlideShare 。

6

决策树

决策树是一种自上而下、分步解决的递归分类器。决策树通常来说由两种任务组成:归纳和修剪。归纳是用一组预先分类的数据作为输入,判断最好用哪些特性来分类,然后将数据库分类,基于其产生的分类数据库再进行递归,直到所有的训练数据都完成分类。打造树的时候,我们的目标是找到特性来分类,从而创造出最纯粹的子节,这样,要将数据库中所有数据分类,只需要最少的分类次数。这种纯度是以信息的概念来衡量。

一个完整的决策树模型可能过于复杂,包含不必要的结构,而且很难解读。因而我们还需要“修剪”这个环节,将不需要的结构从决策树中去除,让决策树更加高效、简单易读并且更加精确。

右上箭头:最大间隔超平面。左下箭头:支持向量。图片来源: KDNuggets 。

7

支持向量机(SVM)

SVM可以分类线性与非线性数据。SVM的原理是将训练数据转化进入更高的维度,再检查这个维度中的最优间隔距离,或者不同分类中的边界。在SVM中,这些边界被称为“超平面”,通过定位支持向量来划分,或者通过最能够定义类型的个例及其边界。边界是与超平面平行的线条,定义为超平面及其支持向量之间的最短距离。

SVM的宏伟概念概括起来就是:如果有足够多的维度,就一定能发现将两个类别分开的超平面,从而将数据库成员的类别进行非线性化。当重复足够多的次数,就可以生成足够多的超平面,在N个空间维度中,分离所有的类别。

8

神经网络

神经网络是以人类大脑为灵感的算法,虽然,这些算法对真实人脑功能的模拟程度有多少,还存在很多的争议,我们还没法说这些算法真正模拟了人类大脑。神经网络是由无数个相互连接的概念化人工神经元组成,这些神经元在互相之间传送数据,有不同的相关权重,这些权重是基于神经网络的“经验”而定的。“神经元”有激活阈值,如果各个神经元权重的结合达到阈值,神经元就会“激发”。神经元激发的结合就带来了“学习”。

9

深度学习

深度学习相对来说还是个比较新的词汇,虽然在网络搜索大热之前就已经有了这个词汇。这个词汇在研究和业界都名声大噪,主要是因为其他一系列不同领域的巨大成功。深度学习是应用深度神经网络技术——具有多个隐藏神经元层的神经网络架构——来解决问题。深度学习是一个过程,正如使用了深度神经网络架构的数据挖掘,这是一种独特的机器学习算法。

10

增强学习

对于“增强学习”最好的描述来自剑桥大学教授、微软研究科学家Christopher Bishop,他用一句话精确概括:“增强学习是在某一情景中寻找最适合的行为,从而最大化奖励。”增强学习中,并没有给出明确的目标;机器必须通过不断试错的方式进行学习。我们来用经典的马里奥游戏举个例子。通过不断试错,增强学习算法可以判断某些行为、也就是某些游戏按键可以提升玩家的游戏表现,在这里,试错的目标是最优化的游戏表现。

K层交叉检验的例子,在每一轮使用不同的数据进行测试(蓝色为训练数据、黄色为测试数据),方框下为每一轮的验证精度。最终的验证精度是10轮测试的平均数。图片来源: GitHub 。

11

K层交叉检验

交叉检验是一种打造模型的方法,通过去除数据库中K层中的一层,训练所有K减1层中的数据,然后用剩下的第K层来进行测验。然后,再将这个过程重复K次,每一次使用不同层中的数据测试,将错误结果在一个整合模型中结合和平均起来。这样做的目的是生成最精确的预测模型。

12

贝叶斯

当我们讨论概率的时候,有两个最主流的学派:经典学派概率论看重随机事件发生的频率。与之对比,贝叶斯学派认为概率的目标是将未确定性进行量化,并随着额外数据的出现而更新概率。如果这些概率都延伸到真值,我们就有了不同确定程度的“学习”。

原文来自:http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html/2

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2016-06-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

AI的元学习之路

人类的智能的一个关键点在于能力多样性 —— 我们能胜任各种各样的任务。而目前的AI系统则擅长掌握单一技能,例如围棋,Jeopardy(美国的一档电视智力竞赛节目...

42380
来自专栏CDA数据分析师

提问 | 如何利用一批去年的数据,来预测未来三年的数据?

文 | 邹日佳 来自知乎 1、这批去年的数据是按月份的,本身肯定会有波动,但相对稳定。 2、预测未来三年的数据是需要具体到月份。恩 3、请问有什么统计方法可以做...

22490
来自专栏机器学习算法与Python学习

精华 | 12个关键词告诉你告诉你什么是机器学习(基础篇)

键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | 小象 随着人工智能(AI)技术...

36050
来自专栏机器人网

学懂 12 个宝贵经验,更深入了解机器学习

华盛顿大学 Pedro Domingos 教授的“A Few Useful Things to Know about Machine Learning”这篇论文...

28450
来自专栏TensorFlow从0到N

TensorFlow从1到2 - 1 - 深度神经网络

上一主题《TensorFlow从0到1》介绍人工神经网络的基本概念与其TensorFlow实现,主要基于浅层网络架构,即只包含一个隐藏层的全连接(FC,F...

493110
来自专栏IT派

推荐 | 机器学习中的这12条经验,希望对你有所帮助

华盛顿大学 Pedro Domingos 教授的“A Few Useful Things to Know about Machine Learning”这篇论文...

12600
来自专栏机器之心

ICML 2018 | 腾讯AI Lab提出误差补偿式量化SGD:显著降低分布式机器学习的通信成本

作者:Jiaxiang Wu、Weidong Huang、Junzhou Huang、Tong Zhang

14720
来自专栏机器之心

人人都能读懂的无监督学习:什么是聚类和降维?

选自Medium 作者:Vishal Maini 机器之心编译 参与:Panda 机器学习已经成为了改变时代的大事,一时间似乎人人都应该懂一点机器学习。但机器学...

321100
来自专栏专知

谷歌大脑工程师Eric Jang 2017机器学习总结:从表达能力、训练难度和泛化能力讨论机器学习模型

【导读】谷歌大脑工程师Eric Jang在2017年11月20日发表一篇名为《Expressivity, Trainability, and Generaliz...

40050
来自专栏新智元

【一个神经元统治一切】ResNet 强大的理论证明

【新智元导读】MIT CSAIL的研究人员发现,隐藏层仅有一个神经元的ResNet就是一个通用的函数逼近器,恒等映射确实加强了深度网络的表达能力。研究人员表示,...

9900

扫码关注云+社区

领取腾讯云代金券