六分钟动画揭开 AI 的神秘面纱(附视频中字)

CDA字幕组 编译整理

本文为 CDA 数据分析师原创作品,转载需授权

美国数字营销公司HubSpot以六分钟动画的趣谈AI。当中揭示了AI的实质,以及AI给我们生活带来的影响。

每天,相当多的人都在科技发展的支配下。实际上,很少有人明白当中深意。

人工智能

人工智能,比如HAL9000和偏执的机器人Marvin。(注:两者分别为科幻小说《太空漫游》和《银河系漫游指南》中的人工智能)

多亏了书和电影,每一代都有一个属于自己的幻想世界。这个世界也许被机器人主宰,或者由机器人提供服务。我们已经习惯于期待这样一个未来:可以避开交通的飞行汽车,以及平日里由机器人女仆为我们准备晚餐。

但是如果AI时代已经来临的话,为什么我们的生活不像"杰森一家"那样呢?(注:杰特森一家(The Jetsons)描绘未来世界的美国动画片)

首先,那是动画片。如果你们有浏览过Netflix的电影推荐,或者让Alexa点一份披萨(Alexa: Amazon的语音助手) 。那么,你和人工智能的互动可能比你意识到的要还多。

那就对了。AI所设计的目的就是,让你不会意识到背后是计算机发号施令。这同样也帮助我们理解什么是AI,什么不是AI。

听起来有些复杂,用基本术语来说,AI属于计算机科学的一个广泛领域。它让机器看起来拥有人的智慧。因此不仅仅是对计算机进行编程,让它通过遵守交通信号驾驶车辆。同时程序也学会展示出人类具有的行为,比如路怒症。(注:路怒症指机动车驾驶人带着紧张愤怒的情绪开车)

虽然感觉有些吓人,但这项技术并不是最近才出现的。实际上,在过去的半个世纪这个超前的想法已经出现了。

"人工智能"这个术语是在1956年, 由达特茅斯学院的John McCarthy教授提出。

他召集了一群计算机科学家和数学家来研究通过反复实验的方法,机器是否可以像小孩子一样学习,从而发展出形式推理(formal reasoning)的能力。

项目提议中提到他们将弄清楚如何让机器使用语言,形成抽象概念和观点,以解决留给人类的问题,同时实现机器的自我提升。

这是六十多年前了。之后AI大部分都只存在于大学教室和超级机密的实验室中。但如今正在发生改变,就像那些指数曲线一样,很难说清一条缓慢爬升的曲线,什么时候就会像火箭一样一飞冲天。

但是在过去的几年,一些因素使得AI即将成为下一个大热门。

首先,每分钟都在产生大量数据

实际上世界上90%的数据都在过去的两年中产生。如今归功于处理速度的提升,计算机能够更快地理解所有这些信息。因此科技巨头和风险投资家开始投身于AI,为市场注入资本和新的应用。

很快 "人工智能"会变得不那么"人工”,但更加"智能”。

那么问题来了。你是否要为终结者电影中的情节发生在现实生活中发做好准备,并不是。

别再想着机器人了,当我们提到AI时机器人只不过是一层壳。它隐藏了究竟是什么在驱动着科技,也就是说AI可以表现为许多不同形式。

让我们来深究一下。首先是机器人,这些机器人基于文本 并且异常强大,但是同样也有局限。比如让天气机器人预报天气时,它会告诉你局部多云,最高温度为57华氏度(约13.8摄氏度)。但当问它现在的东京时间时,它就不清楚了。因为它仅仅被编程为从特定的数据源中调取天气信息。

自然语言处理让这些机器人变的更加复杂。

当你问Siri或者Cortana最近的加油站在哪儿时,这只是把你的声音转成文字,再把文字输进一个搜索引擎,之后把搜索的答案以人类语法念出来。换句话来说就是,你无需用代码来表达。

另一个要提到的就是机器学习。事实上这是AI领域中最让人兴奋的部分。就像人类一样,机器保留信息并随着时间变得越来越聪明。但是和人类不一样的是,它并不会由于短暂失忆、信息过载、睡眠不足以及注意力分散而受到影响。

机器究竟如何学习?

对人类而言,区分猫和狗是很简单的,但对计算机来说并非如此。如果只考虑外形,猫和狗的区别并不明显。你可以说猫耳朵是尖的,而狗耳朵是下垂的,但是这些规则不是通用的。尾巴长度、皮毛质地和颜色存在很多可能。也就是说需要手动编程一些冗长的规则,来帮助计算机来进行区分。

要记住,机器学习能够让机器像人一样学习。就像幼儿一样,机器需要通过经验来学习。

借助机器学习,程序能够通过分析数千个样例来构建算法。然后根据算法是否达到目标来进行调整,随着时间的推移程序变得越来越聪明。

从而类似IBM Watson的机器人就能够诊断癌症,创作古典交响曲,或者在危险边缘(美国的知识类问答节目)中碾压Ken Jennings(危险边缘的常胜将军)。

有些程序甚至模仿人脑的结构,加之神经网络来更好地帮助人类。如今机器能够解决问题。

AI可能带来的后果

人类很早就在思考AI可能带来的后果。在脑海中想象机器对人类实行报复,或者给人类社会带来毁灭性破坏。

然而,更合理且更迫在眉睫的问题是:

AI会对你的工作带来什么影响?

它会像淘汰你的工作吗?

就像工业革命,这不是人类对抗机器,而是人类联合机器共同解决问题。

重点是让AI帮助你在更短时间内完成更多内容,它处理你工作中的重复性任务,让你处理策略和人际关系的问题。

从而人类可以去做真正擅长的事,”做人类" (而不是机器)。

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2017-11-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

他曾是百度最高奖得主,滴滴首席算法,现在要开一家AI语音超市

先是Google I/O大会上一声“嗯哼”震惊了人类世界,然后微软小冰为知乎写歌唱歌又刷了一波屏。

1112
来自专栏数据猿

华院数据数据科学家尹相志:智能投顾一定能赚大钱吗?

数据猿导读 电脑逐渐可以去做一些我们想不到的事。我不会用替代人力这样的字眼。因为目前来讲,科技取代人类还非常远。最重要的是机器帮助我们从无聊、繁琐的事情中脱身...

43210
来自专栏腾讯研究院的专栏

拥抱人工智能革命,从碎片化向复杂化演进

作者:Sandra Upson Executive editor of Backchannel @ Conde Nast, formerly of...

1717
来自专栏AI科技评论

探讨自然语言处理的商业落地:从基础平台到数据算法 | CCF-GAIR 2018

AI 科技评论按:2018 全球人工智能与机器人峰会(CCF-GAIR)在深圳召开,峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,得到了...

2134
来自专栏钱塘大数据

吴军:数学为人生之题解出漂亮的答案

如果用当下比较流行的说法来概括吴军的身份,他便是会摄影、会写作的计算机科学家中最爱发微博的投资人——几乎很难用一句话涵盖“吴军博士”(吴军的微博昵称)会做什么、...

1225
来自专栏AI研习社

亚马逊数据专家十年经验总结:成为数据科学家的关键四步

编者按:本文作者 Karolis Urbonas,文章选自他个人博客。AI 研习社编译。 对于数据科学家这一职业,你了解多少? ——这是个被大公司追捧的职位,供...

3776
来自专栏新智元

【微软芮勇】人工智能时代,我们能做什么?

【新智元导读】微软亚洲研究院常务副院长芮勇在《新智元:机器+人类=超智能时代》书中畅想人工智能发展6大阶段,详细介绍微软语音识别、图像识别、牛津计划等多项人工智...

3168
来自专栏大数据文摘

百度余凯:数据是极好的竞争壁垒

27911
来自专栏AI科技评论

盘点丨2016 这一年,深度学习开始主宰互联网

AI 科技评论按:2016 即将画上句号,当我们回顾这一年的科技进展时,很难不联想到一个词——深度学习。当它从研究室中脱胎而出,并成为今年的当红热词,实际上我们...

3476
来自专栏华章科技

亚马逊数据专家十年经验总结:成为数据科学家的关键四步

但是,怎样才能成为数据科学家?或者说,一个合格的数据科学家需要具备哪些技能和素养?

893

扫码关注云+社区

领取腾讯云代金券