【投稿】实战 | 6个步骤巧用知觉图 快速高效解析品牌定位

本文为HCR-慧思拓电商数据研究总监张淳投稿,如需转载请注明作者与来源。

传统研究时代,知觉图(perceptual map)是一个简洁直观解析品牌定位的经典工具,然而随着大数据时代的降临,传统的数据获取方法受到了不断的冲击,原来使用焦点小组(Focus Group) 或调研问卷获得数据变成了一项费时费力,且耗费成本的工作。大数据背景下,可不可以有更简单,更快捷的方式获知品牌及其竞争对手的定位?可不可以快速评价品牌定位是否达到目标位置?可不可以全面检验修正品牌传播策略正确与否?这些问题都值得我们来探讨。

知觉图是什么?

先说说知觉图的含义。知觉图是消费者对某一系列产品或品牌的知觉和偏好的形象化表述。目的是尝试将消费者或潜在消费者的感知用直观的、形象化的图像表达出来。特别是用在产品、产品系列、品牌的定位方面,也会用于描述企业与竞争对手的相对位置方面。

知觉图可以是多维的,但通常的情形是二维的。下图通过两维展示了消费者心目中笔记本电脑品牌在用户导向/标准配置,创意设计/经济实用方面的品牌定位。此例中,消费者认为,苹果品牌代表了创新设计及用户导向的特性。而三星笔记本则代表了经济实用和标准配置。

*非真实数据,仅用于展示

如何用大数据的方法绘制知觉图?

绘制知觉图,涉及到至少6个步骤:

1.确定研究方向:作为咨询研究公司,研究方向往往是通过对消费者的研究,获取其对于客户某产品及其竞争对手产品的感觉或偏好。这时我们要选择符合该产品的一系列变量指标以及想要研究的目标品牌。通常来说, 品牌和变量指标之间存在一个理想的比例关系,即1.3-1.6倍,也就是说如果研究8-10个品牌,大致需要14-15个变量。在传统研究时代,通过问卷获取消费者认知的阶段中,对于品牌的研究一般不超过20个,否则可能导致调查对象的疲倦,最终影响调研结果。而在大数据获取的背景下,数据是本身的获取是相对客观的,并不存在这个问题。这也算是大数据绘制知觉图的优势之一。

2.获取数据本次介绍的大数据获取用户感知数据的方式,主要来自电商评论数据的获取。与传统途径相比,它具有采集快速,数据量大的特点。在我最新的研究项目中,仅6个月内关于几大剃须刀品牌的商品评论数据就采集33万条之多,而采集时间却仅用了一天。省去了问卷设计,调研对象邀约,答题,统计等多个环节,最终获取到多于问卷调研对象百倍的原始数据。当然这种大数据的采集方式,也会存在短板,比如评价不同品牌的个体不相同,个人评论的尺度的不同可能会影响最终的结果,但通过大量级的数据收集,可以将这种误差控制在可控范围内。任何一项研究都可能存在误差,而传统问卷抽样所导致的误差问题可能更明显。

3.确定产品变量:传统问卷的采集形式中,确定产品维度的工作是在数据采集前完成的,即先确定需要考察的产品属性,之后体现在问卷设计当中向调查对象提问。在大数据的研究方法中,在数据采集之后,可通过高频属性的方式,提炼出某产品最受关注的一系列属性。例如:物流,服务,促销,价格,外观,功能,质量,体验等。每一项指标分为正面,中性,负面。相当于以往问卷式研究中的1-3分量表,即负面等于1分表示不满意,中性等于2分表示一般,正面等于3分表示满意。

4.数据处理:计算每一条评价在不同的指标下的分数,汇总后取平均值,得到不同品牌在各项指标下的平均得分。此处以剃须刀为例(非真实数据):

因子分析中的主成分分析法可以得出每个品牌及每项指标的两维(X,Y)值:

飞利浦

.671

-.580

博朗

1.106

1.099

飞科

.788

-.643

松下

.848

.701

超人

-1.321

1.646

奔腾

-1.340

-.395

朗威

-.089

-.839

科美

-.662

-.990

物流

.963

-.092

声音

.935

.166

服务

.932

-.296

质量

.899

-.187

动力

.795

.328

剃须体验

.694

.350

促销/赠品

-.692

-.427

价格

-.644

-.326

包装

.099

.867

外观设计

-.081

.857

电源

.500

.818

剃须效果

-.127

.759

便携性

-.145

-.117

5.绘图:根据品牌及指标的X,Y值,绘制出知觉图。在绘制知觉图的时候,有一项工作是非常重要的。即坐标轴的命名。此处可根据轴两侧45%角内指标的特性,为X,Y轴命名。例如:X轴负半轴,可根据便携,价格和促销/赠品来命名,比如“经济实用”。如果遇到命名指标数量过少的情况,如Y轴负半轴,则可用正半轴相关指标的反义词来辅助命名。

(*非真实数据,仅用于展示)

6.图表解读位置越相近的品牌,说明他们的市场定位越接近。而同属一个象限的品牌,在本质上可以被聚类。例如博朗与松下;奔腾,科美及朗威;飞利浦与飞科。他们彼此形成强烈的竞争关系。对于这些品牌,可以通过知觉图检测品牌定位的正确与否,通过逐渐改变品牌定位的方法,迁移到理想的新位置。

大数据时代的到来,提供了我们更多,更大的数据。获取数据的时间缩短了,成本降低了。但对于传统研究方法的借鉴,仍然是一个值得关注的话题。

作者介绍

张淳,HCR-慧思拓 电商数据研究总监。DePaul University营销分析专业硕士(全美唯一设立数据分析与营销结合专业的学校)。多年消费品行业研究经验,专长领域电商大数据,曾服务宝洁,联合利华,金佰利,伊利,蒙牛,天翼,美的等大型品牌客户,行业涉及母婴,家电,日化,数码,医疗等。

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2015-09-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【数据科学家】如何成为一名数据科学家?

一、数据科学家的起源 “数据科学”(DataScience)起初叫”datalogy “。最初在1966年由Peter Naur提出,用来代替”计算机科学”(丹...

25860
来自专栏人工智能头条

迈克尔 · 乔丹:我讨厌将机器学习称为AI

17330
来自专栏思影科技

脑磁图研究:大脑多时间尺度并行抽取声音信息

阿牛哥喊你来关注思影科技,做个scientist! 我们对声音的感觉总是连续和平滑的。听人说话,听音乐,在大街上听到各种周围的声音,我们感觉起来都好像流水连续...

39660
来自专栏机器之心

Kaggle首份机器学习大调查:最常用的算法、语言竟然是......

420150
来自专栏量子位

找一份高薪的AI工作有多难?

AI岗位这几年一直大热,而知乎上这个问题最近同样很热,陆续吸引了200多个回答,已经有5000多人关注,接近200万浏览。

17830
来自专栏人工智能头条

合肥工业大学吴信东:大数据Processing Framework多层架构

17440
来自专栏大数据文摘

物理学家看人工智能:懂了你就不怕了

803140
来自专栏数据科学与人工智能

【数据科学】什么是数据科学家与数据科学

仅仅在几年前,数据科学家还不是一个正式确定的职业,然而一眨眼的工夫,这个职业就已经被誉为“今后十年IT行业最重要的人才”了。 一、数据科学家的起源 “数据科学”...

31060
来自专栏WOLFRAM

向宇宙宣告:人类文明未来的信标(II)

如果我们要用语言来解释我们的历史,如何做到呢?我们不可能把所发生的每一个细节都逐一阐述。我们需要提供一个更高级的符号式描述, 抓住重要部分,而理想化其他东西。当...

9830
来自专栏大数据文摘

人类到底有多愚蠢?让Oculus的首席科学家告诉你

17730

扫码关注云+社区

领取腾讯云代金券