图像分割(一) 之简介

图像分割就是将图像划分为若干个互不相交的小区域的过程,所谓小区域是某种意义下具有共同属性的像素的连通集合。

基于阈值分割方法实际上是输入图像f到输出图像g的变换:

其中,T为阈值,对于物体的图像元素g(i,j)=1,对于北京图像元素g(i,j)=0。

阈值分割技术可分为全局阈值和局部自适应阈值分割。

1.全局阈值分割

全局阈值是指整幅图像使用同一个阈值进行分割处理,适用于背景和前景有明显对比的图像。这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。

下面以最大类间方差分割算法(OTSU)来说明全局分割阈值的应用。最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法。它是按图像的灰度特性,将图像分成北京和目标两部分。背景和目标之间的类间方差越大,说明构成图像的两部分差别越大,当部分目标错分为背景或部分北京错分为目标都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。

对于图像I(x,y),前景(目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像比例记为ω0,其平均灰度记为μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度记为μ1;图像的总平均灰度记为μ,类间方差记为g。假设图像的背景较暗,并且图像大小为MxN,图像中像素的灰度值小于阈值T的像素个数记作N0,若把图像中像素的灰度值大于阈值T的像素个数记作N1,则有

2.局部自适应分割

全局阈值分割算法简单,对于双峰直方图图像有很好的分割效果,然而全局阈值分割的特点也显而易见:对于图像噪声和光照不均匀性十分敏感,在这种情况下,采用全局阈值分割往往会失败。

局部自适应阈值分割根据像素邻域块的像素值分布来确定该像素位置上的二值化阈值,这样做得好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的。亮度较高的图像区域的二值化阈值通常较高,而亮度较低的图像区域则会相适应地变小。不同亮度、对比度、纹理的局部图像区域将会拥有相对应的局部二值化阈值。

常用的局部自适应阈值是局部邻域块的均值和局部邻域块的高斯加权和。

首先给出局部自适应高斯分割的定义:将处理窗口设为矩形移动窗,设r为处理窗口半径,T为窗口内的局部分割后阈值,μ为窗口内像素均值,δ2为窗口内像素方差,I(x,y)为输入像素值,g(x,y)为分割后的像素值,K为一个大于0的常熟。有如下定义:

通常情况下,根据不同的图像,K为0~4的常数。选取合适的窗口尺寸可以保证窗口内像素直方图有明显的分割门限,可以很好地达到预期分割效果。

本文分享自微信公众号 - 瓜大三哥(xiguazai_tortoise)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-09-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏红色石头的机器学习之路

台湾大学林轩田机器学习技法课程学习笔记2 -- Dual Support Vector Machine

上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。Linear SVM的目标是找出最“胖”的分割线进行正负类的分...

26600
来自专栏SnailTyan

Deformable Convolutional Networks论文翻译——中文版

Deformable Convolutional Networks 摘要 卷积神经网络(CNN)由于其构建模块固定的几何结构天然地局限于建模几何变换。在这项工作...

32900
来自专栏人工智能LeadAI

基于深度卷积神经网络进行人脸识别的原理是什么?

我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。 它的...

50880
来自专栏计算机视觉战队

每日一学——线性分类笔记(上)

线性分类 上一篇笔记介绍了图像分类问题。图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像。我们还介绍了k-Nearest Neighbor...

34750
来自专栏机器学习算法与Python学习

线性分类器

线性分类 上一篇笔记介绍了图像分类问题。图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像。我们还介绍了k-Nearest Neighbor...

39590
来自专栏深度学习与计算机视觉

Object Detection系列(四) Faster R-CNN

Object Detection系列(一) R-CNN Object Detection系列(二) SPP-Net Object Detection系列...

37550
来自专栏机器学习算法工程师

循环神经网络(RNN)模型与前向反向传播算法

在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型...

26430
来自专栏机器学习算法原理与实践

深度神经网络(DNN)损失函数和激活函数的选择

    在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实...

20510
来自专栏AI研习社

看了这篇文章,了解深度卷积神经网络在目标检测中的进展

近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高。回顾从 2014 到 2016 这两年多的时间,先后涌现出了 R-CNN,Fast ...

29980
来自专栏机器学习算法工程师

重磅|基于深度学习的目标检测综述(一)

作者:叶 虎 编辑:黄俊嘉 前 言 图像分类,检测及分割是计算机视觉领域的三大任务。图像分类模型(详情见[这里](https://medium.c...

87450

扫码关注云+社区

领取腾讯云代金券