【周末漫谈】用漫画,深入浅出解读机器学习

故事一:瑞雪兆丰年

我们中国有一句关于农业生产的古老谚语:瑞雪兆丰年。

就是说,如果前一年冬天下雪很大很多,那么第二年庄稼丰收的可能性比较大。

这条谚语是怎么来的呢?我们可以想象当时的情景:

第一年冬天

第二年收获时节

第二年冬天

第三年收获时节

第三年冬天

第四年收获时节

年复一年,若干年后的冬天......

这就是瑞雪兆丰年的故事。头年的瑞雪和来年的丰收,本是两个看起来并不相关的现象,但是智慧的农民伯伯通过几十年甚至几代人的经验,总结出了两个现象之间的规律。

现代的农业学家通过科学的分析,弄清了瑞雪兆丰年规律背后的本质原理。但是对于古代农民伯伯来说,知道规律就足够了,可以通过规律来为下一年的生产生活做出有效的调整。

故事二:啤酒和尿布

上个世纪90年代,沃尔玛超市已经是美国最大的零售企业,拥有大量的顾客资源。那时候的沃尔玛已经采用了先进的计算机技术,随时记录着每天众多顾客购物车中所挑选的商品明细。

在其中一个普通的日子里:

就这样经年累月,沃尔玛积累了大量的顾客购物数据。直到某一天,沃尔玛的技术专家发现:

于是,这一尝试实行以后......

从此,沃尔玛的销售额得到了显著提升,啤酒尿布的故事也广为流传,成为了销售界和IT界津津乐道的成功典范......

这就是沃尔玛啤酒和尿布的故事。顾客购买啤酒的行为和顾客购买尿布的行为,原本是两个看起来没什么关联的现象。但是沃尔玛的技术专家以大量的用户购物数据为样本,通过先进的算法,最终寻找到了两者之间的重要关联和规律。

为什么购买啤酒的人更有可能同时购买尿布呢?是因为有了小孩的男人比别人更爱喝啤酒?还是因为爱喝啤酒的男人比别人更顾家?这些臆测似乎都有些牵强。

但是沃尔玛不需要关心规律背后的本质。对企业来讲,利用发现的规律,获得实实在在的利益就足够了。

以下是小灰根据个人理解说画的流程图:

以下是大黄基于小灰的流程图所做的补充:

以下是大黄对流程图结果部分作出的调整。其中假设模型可以理解成训练出来的降雪和收获的规律,通过假设模型,从新一年降雪情况推断出下一年收获情况的过程叫做回归。至于啤酒尿布的例子,属于截然不同的机器学习类型,只需要找出关联关系,并不需要进行回归。

机器学习按照方式不同主要分为三大类,有监督学习(Supervised learning)、无监督学习(Unsupervised learning)以及半监督学习(Semi-supervised learning)。

监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出。在瑞雪兆丰年的例子中,头年降雪量就是输入,来年亩产量就是输出。

非监督学习:直接对输入数据集进行建模,寻找关联。例如啤酒尿布的例子,只需要寻找关联性,并不需要什么明确的目标值输出。

半监督学习:综合利用有输入输出的数据,和只有输入的数据来进行训练。可以简单理解成监督学习和非监督学习的综合。

这里所介绍的相关知识,只是作者对于机器学习领域的浅层次理解。通过这篇漫画,希望没有从过IT行业,或者不了解机器学习的朋友们能够对机器学习有一些初步的认知。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-06-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏灯塔大数据

《黑镜》中的读心术可能比你想象的来得快

导读:上一期了解了聊天机器人的相关介绍,今天我们来了解一下关于读心术人工智能的相关内容(文末更多往期译文推荐) ? 我们的思想可能不再是秘密的避风港。科学家们...

3407
来自专栏新智元

ResNet成为AlphaGo Zero核心技术,孙剑详解Zero的伟大与局限

【新智元导读】DeepMind迄今最强棋手AlphaGo Zero横空出世,其中一个重要组成部分是出自华人团队的深度残差网络ResNet。新智元采访了深度残差网...

3497
来自专栏CDA数据分析师

我是如何从物理学转行到数据科学领域

很多人问我是如果从物理学转行到数据科学,本文讲述了关于我为什么决定成为一名数据科学家,以及我是如何追求并实现目标的。希望能够最终鼓励更多的人追求自己的梦想。让我...

1082
来自专栏量子位

中国AI军团称霸全球口语翻译大赛!搜狗夺冠,讯飞阿里二三

在刚刚落幕的IWSLT(International Workshop on Spoken Language Translation)国际顶级口语机器翻译评测大赛...

624
来自专栏新智元

递归神经网络之父:打造无监督式通用神经网络人工智能

【新智元导读】瑞士人工智能实验室IDSIA的科学事务主管Jürgen Schmidhuber 1997年率领团队提出了简化时间递归神经网络的长短期记忆时间递归神...

4105
来自专栏AI科技评论

动态 | 最权威的比赛,看全球人脸识别技术发展格局

AI 科技评论按:在最近公布的国际权威人脸识别供应商测试 FRVT(Face Recognition Vendor Test)结果中,中国公司依图科技获得了四项...

3357
来自专栏新智元

金融大鳄索罗斯再度唱空中国经济,深度学习能预测金融危机?

【新智元导读】金融大鳄索罗斯日前发表评论,他看空中国经济,目前正在做空亚洲货币。今天,《人民日报》海外版刊文斥责索罗斯的“唱空论”。那么,中国情况究竟怎样?芬兰...

3948
来自专栏华章科技

漫画:什么是机器学习?

感谢作者 玻璃猫 (订阅号 梦见 ID dreamsee321) 投稿,如需转载,请与作者联系授权事宜。

642
来自专栏机器人网

如何让机器人认识“长颈鹿”?

带个三岁小娃去动物园,她凭直觉就知道这个在吃树叶的长脖子生物就是她图画书中叫做“长颈鹿”的动物。这看起来很平常,但其实非常了不起。图画书里是一个单线条组成的静态...

2688
来自专栏AI科技评论

澳门大学陈俊龙:颠覆纵向的「深度」学习,宽度学习系统如何用横向扩展进行高效增量学习?

AI 科技评论按:想必各位读者对深度神经网络及深度学习都不会感到陌生,不论是在数据处理或是应用层面,都取得了斐然的成绩。但囿于结构的复杂性及超参数的数量巨大,一...

36911

扫码关注云+社区