【工具】学AI必须接触的12样工具,你知道吗?

随着近年来科技的发展,人工智能的利用率也是越来越高,我们需要随时了解人工智能的哪些工具、库、平台,以及提供的功能,哪些更加适合你。下面介绍的一些AI工具、库和平台,了解它们最常见的用途、优缺点,以及一些其他的方面,可以让你轻松的选出更加适合自己的AI工具。

1.Azure机器学习

如果你没有高超的编程技能,但却很希望涉足机器学习领域,那你就不能错过Azure机器学习。它是基于云端的服务,提供的工具可用来部署预测模型作为分析解决方案。不仅如此,还可以用来测试机器学习模型等等。然而,用户界面是使用者对它的吐槽点,尤其是涉及到代码编写的时候。

2.Caffe(卷积神经网络框架)

Caffe目前已经成为深度学习的一个开源框架了,它支持各种类型的软件架构设计会议及图像分割和图像分类。

3.CNTK(计算网络工具包)

CNTK是一款深度学习的工具包,由微软开发,它可以帮助用户把不同类型的神经网络轻松地结合到一起,而且允许分布式训练,灵活度非常高。但它的源代码缺乏可视化。

4.DeepLearning4J

DeepLearning4J自称是专门适用于JVM的开源、分布式深度学习的库。它特别适于培训分布式深度学习网络,且可以整合Hadoop和Spark。此外,由于它是用Java构建的,所以必须自己手工创建显式类以便将矩阵添加到一起,而如果是用Python的话,那就不需要创建了。

5.IBM Watson

IBM Watson被称为“问答机器”, 它使用分析能力和人工智能增强human-like的能力来应对问题。另外,IBM还可以确保用户的数据得到世界级的安全保护和加密功能,而且承诺不会分享数据,除非你自己愿意。

6.Keras

Keras神经网络是一个用Python编写的开源库。如果你正在寻找哪些库可以允许用户执行快速而且简单的实验,那么选Keras就没错了。

7.PyBrain

PyBrain是一个开源的、模块化的机器学习库,它完全面向框架,且PyBrains库是由算法组成的,这些算法允许开发人员使用强化学习等概念,非监督机器学习和神经网络。

8.Scikit-learn

Scikit-learn机器学习是一个开源框架,Python有用的数据挖掘、数据分析和数据可视化。使用Python,工作速度会比较突出,然而,不适合大数据集。

9.Swift AI

Swift AI是Swift用于深度学习和神经网络的库,支持Mac机器(很快也会支持Linux)。它允许开发人员创建神经网络,创建深度学习算法和信号处理。

10.TensorFlow

TensorFlow现在已经是semi-open-source库了,它最初是用来进行深度学习神经网络和机器学习的研究。它允许开发人员进行数值计算。AI开发者可以使用TensorFlow库在模式识别方面构建和训练神经网络,但缺点是像Caffe一样,也不支持外部数据集。

11.Theano

如果你用深度学习处理,那就要处理很多数值的任务。Theano非常适合处理这些任务,例如矩阵运算、符号变量等,可以即时编译为CPU或GPU的机器代码。Theano是时间最久的深度学习库之一。

12.Torch

Torch是一个用于科学计算的开源框架,支持机器学习算法,还可以移植到iOS和Android的后端。而且它得益于脚本语言LuaJIT和底层的C/CUDA实现,LuaJIT允许开发人员用C语言与Torch进行交互。Torch已经指出一些缺点,包括从目录中加载数据是非常困难,过于依赖Lua(相对较新的语言)使不容易被使用。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2017-11-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

Facebook如何运用机器学习进行亿级用户数据处理

2735
来自专栏ATYUN订阅号

【实验】试试这个AI实验:把2D图像转换成3D

AiTechYun 编辑:nanan ? 2D图像转换为3D 今年1月,Fleisher和Shirin Anlen(该AI的开发人员)写了一个关于图像转换的AI...

3939
来自专栏智能计算时代

机器学习在行业应用中的案例研究

原文作者:微软雷德蒙研究院首席研究经理Chris Burges 译者:陈彬 大家好,我是Chris Burges。在我于微软14年以及此前在贝尔实验室14年的科...

2777
来自专栏机器之心

业界 | 英特尔开源nGraph编译器:从多框架到多设备轻松实现模型部署

选自ai.intel 作者:Scott Cyphers 机器之心编译 参与:刘晓坤、李亚洲 近日,英特尔的人工智能产品团队宣布开源 nGraph,这是一个面向各...

3898
来自专栏AI研习社

我是这样从零开始用深度学习做狗脸识别 iOS App 的

我是一个初创公司的软件工程师。曾经有段时间在谷歌工作,做谷歌财经图表和Multiple inboxes,并主管谷歌地图的业务。最近,我开了一家叫Spring的购...

2112
来自专栏机器之心

伯克利星际争霸II AI「撞车」腾讯,作者:我们不一样

深度强化学习已经成为获取有竞争力游戏智能体的有力工具,在 Atari(Mnih et al. 2015)、Go(Silver et al. 2016)、Mine...

1022
来自专栏云时之间

JD数据比赛的一些思路

1:题目要求 参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型,预测用户在未来5天内,对某个目标品类下商品的购买意向。对于训练集中出现的每一个用户,...

35711
来自专栏专知

Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)

【导读】本文是Kirti Bakshi在1月14日写的关于其强化学习课程的一个介绍,作者首先简单介绍了机器学习的缺点,以及为什么使用深度学习。然后讲述了其开设的...

4455
来自专栏人工智能

新型神经网络系统:由忆阻器制成,效率更高!

导读 美国密歇根大学开发出由忆阻器制成的神经网络系统,也称为储备池计算系统。它教会机器像人类一样思考,并显著提升效率。 背景 神经网络,是一种应用类似于大脑神经...

2076
来自专栏机器之心

业界 | 深度学习芯片公司Graphcore初探:颠覆GPU、FPGA和CPU的新一代处理器IPU

选自Nextplatform 作者:Nicole Hemsoth 机器之心编译 参与:朱朝阳、侯韵楚、李亚洲、黄小天 ? 作为思维锻炼,让我们将神经网络视为大量...

2794

扫码关注云+社区

领取腾讯云代金券