【科技】AI创新将引发“机器人网络效应” 促进机器人技术快速发展

作为当今智能机器人的核心,传感器和AI相融合正产生良性的反馈回路,或者我们所说的“机器人网络效应”。我们目前正处于“机器人网络效应”临界点的边缘,这将大幅加速机器人技术的发展。

任何考虑过扩展业务或构建网络的人都熟悉所谓的“网络效应”。例如,使用eBay等平台的买家和卖家越多,它就会显得越有用。那么,数据网络效应就是一个动态的效应,随着使用这种服务的增多,实际上也有助于改善服务本身,比如随着接受的训练数据增多,机器学习模型通常会变得更加精确。

无人驾驶汽车和其他智能机器人依靠传感器来产生越来越多、高度变化的数据,这些数据被用来建立更好的AI模型,机器人可以依靠这些AI模型来做出实时决策,并在现实环境中导航。

作为当今智能机器人的核心,传感器和AI相融合正产生良性的反馈回路,或者我们所说的“机器人网络效应”。我们目前正处于“机器人网络效应”临界点的边缘,这将大幅加速机器人技术的发展。

AI的快速发展

为了理解机器人为什么是AI的下一个前沿,我们需要退后一步,首先了解AI是如何进化的。

近年来发展起来的机器智能系统能够利用大量的数据,而这些数据在20世纪90年代中期还没有出现。存储和计算方面的进步并不能解释AI的迅速发展的原因。

开源机器学习库和框架具有同等重要的作用。15年前,当科学计算框架Torch发布BSD开源许可证时,它包含了许多数据科学家常用的算法,例如深度学习、多层感知器、支持向量机和K-近邻算法(K-nearest neighbors)等。

最近,像TensorFlow和PyTorch这样的开源项目为这个共享的知识库做出了宝贵的贡献,帮助不同背景的软件工程师开发新的模型和应用程序。领域专家需要大量的数据来创建和训练这些模型。大型企业有很大的优势,因为它们可以利用现有的数据网络效应。

传感器数据和处理能力

自20世纪60年代初以来,光探测和测距(激光雷达)传感器就已经存在。他们在地理信息学、考古学、林业、大气研究、国防和其他行业中得到应用。近年来,激光雷达已成为自主导航的首选传感器。

Google无人驾驶车辆上的激光雷达传感器每秒产生750MB的数据,而8部车载计算机视觉摄像机每秒钟产生1.8GB的数据。所有这些数据都需要实时处理,但是集中计算(在云端)对于实时的高速情况来说还不够快。为了解决这个问题,我们开始开发边缘计算。而在机器人身上,我们则采用车载计算。

目前大多数自动驾驶车辆的解决方案是使用两个车载“盒子”,每个都配备了Intel Xeon E5 CPU和4到8个Nvidia K80 GPU加速器。在达到最高性能时,可消耗超过5000W的电力。Nvidia新推出的Drive PX Pegasus,可以支持每秒320万亿次计算操作,正在开始更有效地解决这一问题。

AI突破

我们能够同时处理传感器数据和融合各种数据模式的能力,将继续推动智能机器人的发展。为了让这种传感器融合实时发生,我们需要将机器学习和深度学习模型置于边缘计算中。当然,分散式AI也增加了分散式处理器的需求。

幸运的是,机器学习和深度学习计算正在变得更加高效。例如,Graphcore的智能处理单元(IPU)和Google的张量处理单元(TPU)正在降低成本,并在规模上加速神经网络的性能。

此外,IBM正在开发模仿大脑解剖学的神经形态芯片。其原型使用一百万个神经元,每个神经元有256个突触。该系统特别适合解释感官数据,因为它的设计是为了近似人类大脑对感知数据的解释和分析。

所有这些来自传感器的数据的结果,意味着我们正处于“机器人网络效应”的边缘,这将对AI、机器人技术及其各种应用产生巨大的影响。

一个新的数据世界

“机器人网络效应”将使新技术和新机器,不仅能够处理更大的数据量,而且还能处理扩大的各种数据。而新的传感器将能够探测和捕捉我们可能没有想到的数据,因为人类的感知能力有限。机器和智能设备将把丰富的数据反馈到云端和邻近的代理商,为决策提供信息,加强协调,并在连续的模型改进中发挥重要作用。

这些进步比许多人意识到的要快得多。例如,Aromyx使用先进的机器学习模型来建立传感器系统,并为数据采集、索引、搜索气味和口味数据提供平台。该公司的EssenceChip是一种一次性传感器,可以输出人类鼻子或舌头在闻到或品尝食物或饮料时发出的相同生化信号。

比如,开放式仿生学正在开发机器人假体,它依赖于从手臂套筒内的传感器收集的触觉数据来控制手和手指的动作。这种设计利用机器学习模型将电极感测到的精细肌张力转化为仿生手中的复杂运动反应。

传感器数据将有助于推动AI的发展。AI系统将同时扩展我们处理数据的能力,并发现这些数据的创造性用途。除此之外,这将激发新的机器人形态因素,能够收集更广泛的数据模式。随着我们以新的方式“看到”我们的能力进化,日常世界正迅速成为技术发现的下一个伟大前沿。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2017-11-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【干货】最全知识图谱综述#2: 构建技术与典型应用

【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-...

3504
来自专栏新智元

当无人机学会人工智能,它将是世界上最恐怖的武器

外媒称,五角大楼将提供资金,以研发一种小型芯片。这种芯片不仅有着类似人类大脑的人工智能,而且它很小,可以安装到大量移动设备上。 英国网站2月8日发表题为《会像...

2003
来自专栏AI科技评论

视频 | 告别五毛特效,AI 轻松再现多层材料质感

雷锋网AI科技评论按:这里是,雷锋字幕组编译的 Two minutes paper 专栏,每周带大家用碎片时间阅览前沿技术,了解AI领域的最新研究成果。

1022
来自专栏企鹅号快讯

AI造的AI,比人造的还厉害,该喜还是该忧?

图片来自网络 科技日报张梦然 谷歌公司今年稍早时间宣布,他们的人工智能(AI)系统已能发明自己的加密算法,还能生成自己的AI。而据谷歌官方博客及未来主义(Fut...

1748
来自专栏SIGAI学习与实践平台

【AI就业面面观】如何选择适合自己的舞台?

应届生的第一份工作是形成工作习惯、思维方式的主要阶段。要知道,良好的工作方式和做事习惯、思考和解决问题的方式,对于一个人后续的职业发展至关重要,在起跑线上一定要...

865
来自专栏机器之心

深度 | 从规则推理到数据学习:人工智能该学习人类的思维方式吗?

1308
来自专栏新智元

林元庆破解小度问鼎最强大脑三大原理,后吴恩达时代百度 AI 突围

【新智元导读】《最强大脑》第四季最终回播出,百度人工智能机器人小度和人类一起问鼎“脑王”。小度在前两个环节(图像检索和人脸识别)表现优异,最后声纹识别项目挑战失...

3386
来自专栏PPV课数据科学社区

【PPT】腾讯社交网络的大数据建模框架探索报告

PPV课大数据 在10月24日2014中国计算机大会的重要活动之一 —-“大数据高峰论坛”,腾讯公司社交网络运营部专家研究员岳亚丁在论坛上作了题为“社交网络的大...

3133
来自专栏机器之心

业界 | DuerOS普罗米修斯计划:30页国际专家PPT全面剖析对话式AI数据集

机器之心发布 百度 DuerOS 美国西部时间 11 月 9 日,百度 DuerOS 普罗米修斯计划在美国硅谷召开启动发布会。一周后,2017 百度世界大会上,...

30810
来自专栏AI科技大本营的专栏

“神奇女侠”Gal Gadot穿性感粉色吊带乱伦?原来都是深度学习惹的祸

图片来源于网络 翻译 | 刘畅 编辑 | 波波 最近,“神奇女侠”Gal Gadot的乱伦主题私情视频传遍外网,引起轩然大波。 影片中,Gal Gadot穿着桃...

2686

扫描关注云+社区