数据分析师薪资有多高?爬了29个城市的数据告诉你答案

想要从事数据分析师这个岗位,那自然首先需要对这个岗位有所了解。最直接、最真实的方式就是从企业那里获得需求讯息,这样才最能够指导自己的学习方向和简历准备。本文即是要利用爬虫爬取拉勾网上数据分析这一岗位的信息,然后进行一些探索和分析,以数据分析来了解‘数据分析’。

数据来源

本项目所使用的数据集全部来自拉勾网,是通过集搜客这一网络爬虫工具来爬取的。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉钩网上的岗位信息非常完整、整洁,极少存在信息的缺漏。并且几乎所有展现出来的信息都是非常规范化的,极大的减少了前期数据清理和数据整理的工作量。(笔者毕竟是工作之余完成,时间有限,能省则省)本次爬取信息的时候,主要获得了以下信息:

内容

字段

岗位名称

title

月薪

month_salary

公司名称

company

所属行业

industry

公司规模

scale

融资阶段

phase

投资人

investors

所在城市

city

经验要求

experience

学历要求

qualification

全职/兼职

full_or_parttime

职位描述及任职要求

deion

项目目的

主要是希望通过实际的数据来解答针对数据分析岗位的一些疑惑,具体来说,主要针对以下几个问题:

- 数据分析师岗位需求的地域性分布; - 整个群体中薪酬分布的情况; - 不同城市数据分析师的薪酬情况是怎样的; - 该岗位对于工作经验的要求是怎样的; - 根据工作经验的不同,薪酬是怎样变化的; - 从用人单位的角度看,数据分析师应当具备哪些技能? - 掌握不同技能是否会对薪酬有影响?影响是怎样的?

技术和工具

本项目主要分为两大部分,第一部分是数据爬取,采用的是集搜客网络爬虫工具。第二部分是数据分析,以python编程语言为基础。数据分析部分主要使用pandas作为数据整理和统计分析的工具,matplotlib用于图形的可视化,seaborn库包用于图形美化。在进行技能需求分析的时候,使用了jieba作为分词工具包,并使用wordcloud包制作词云。

数据整理

加载和清理

* 点击图片缩略图可放大,下同。

可以看到,经过初步清理后,数据集中有效变量为13个,数据记录575条。除了投资人这一项之外,其他各字段的数据完整度非常好,几乎没有缺失值。这对于后面的分析来说是个大大的好消息。

数据分析

地域性分布

<matplotlib.text.Text at 0x1102e1f90>

在拉勾网上,全国有29个城市的企业邮数据分析师的人才需求,其中将近一半需求产生在北京市,需求量全国第一。排在前5的分别是:北京、上海、深圳、杭州、广州。数据分析这一职业大量集中在北上广深四大一线城市,以及杭州这个互联网和电子商务企业的聚集地。北京市巨大的需求比重令我稍感意外,不过,考虑到拉勾网是一个偏重互联网相关行业的招聘平台,而我国大量互联网企业在北京聚集,这个结果倒也算合理。以后有时间,可以对全国互联网行业分布特点做个分析。

总而言之,可以得出一个清晰的结论:数据分析这一岗位,有大量的工作机会集中在北上广深以及杭州,期待往这个方向发展的同学还是要到这些城市去多多尝试。当然,从另一个方面说,这些城市也都集中了大量的各行业人才,竞争压力想必也是很大的。

总体薪酬情况

如同大多数其他工作一样,数据分析师的薪酬也是一个右偏分布。大多数人的收入集中在5k-20k每月,只有少数人能够获得更高的薪酬,但有极少数人薪酬极高,让人充满期待。需要说明的是,拉勾网上的薪酬值是一个区间值,并且相互之间互有重叠,为了便于分析,我取区间的中值作为代表值进行的分析。因此,实际的薪酬分布情况可能会比图中的情况更好一些。总是有人能够拿到薪酬的上限。综合来看,数据分析师的薪酬收入整体还是可观的,从这方面说,选择这个职业还是不错的。

不同城市薪酬分布情况

<matplotlib.text.Text at 0x115796650>

忽略掉那些人才需求量比较小的城市,我重点关注排名前六的城市。从图上看,这六大城市的薪酬分布情况总体来说都比较集中,这和我们前面看到的全国的薪酬总体情况分布是一致的。深圳市薪酬分布中位数大约在15k,居全国首位。其次是北京,约12.5k,之后是上海和杭州。深圳确实是个创造奇迹的城市,在这里也给了我一个小小的惊喜。从待遇上看,数据分析师留在深圳发展是个不错的选择。

工作经验需求

<matplotlib.text.Text at 0x110577dd0>

不出所料的,工作经验的需求分布近似于正态分布。工作1-3年经验的熟手需求量最大,其次是3-5年工作经验的资深分析师。工作经验不足1年的新人,市场需求量比较少。另外,工作经验要5-10年的需求量非常稀少,而10年以上的更是凤毛麟角。

从这个分布我们大致可以猜测出:

数据分析是个年轻的职业方向,大量的工作经验需求集中在1-3年;对于数据分析师来说,5年是个瓶颈期,如果在5年之内没有转型或者质的提升,大概以后的竞争压力会比较大。

不同工作经验的薪酬分布

<matplotlib.text.Text at 0x11cc58f50>

毫无疑问的,随着经验的提升,数据分析师的薪酬也在不断提高。另外,从现有数据来看,数据分析师似乎是个常青的职业方向,在10年内大概不会因为年龄的增长导致收入下降。

职业技能关键词

词云显示出的情况,有点超出了我的预料。对于数据分析师这一岗位,企业需求频率最高的技能并不是Python语言和R语言等如今非常时髦的数据分析语言,而是传统的结构化查询语言SQL和表格神器Excel。这一点需要各位小伙伴注意,要想从事数据分析师岗位,SQL和Excel看起来是必备技能。 从词云上看出,数据分析师技能需求频率排在前列的有:SQL,Excel, SAS,SPSS, Python, Hadoop和MySQL等。另外,Java, PPT, BI软件等属于第二梯队。

掌握不同技能对薪酬收入的影响

<matplotlib.text.Text at 0x11f59b890>

我对需求频率最高的前15个技能进行统计计算,得出每一个技能对应的平均薪酬水平,如上图。点的大小代表该技能需求量的多少。

在前15项技能中,shell,Hive, Spark这三者的平均薪酬水平最高,并且相对其他技能来说有比较大的差异。对数据分析师工作有所了解的人应该都知道,这三个工具中,Hive和Spark都是应用于分布式数据处理,而shell脚本则是Linux系统下工作的必须技能。这三者共同指向了一个方向,那就是海量数据的分布式处理!

所以,想要拿高薪的小伙伴注意了,海量数据处理、分布式处理框架是走向高薪的正确方向。 另外值得注意的是,在数据分析领域,Python语言的平均薪酬水平要高于目前如日中天的Java语言。而SQL语言和传统的SAS,SPSS两大数据分析软件,则能够让你在保证中等收入的条件下,能够适应更多企业的要求,也就意味着更多的工作机会。

分析结论

通过上面的分析,我们可以得到的结论有这些: 数据分析这一岗位,有大量的工作机会集中在北上广深以及杭州。 大多数据分析师的收入集中在5k-20k每月,只有少数人能够获得更高的薪酬,但有极少数人薪酬极高,让人充满期待。

从待遇上看,数据分析师留在深圳发展是个不错的选择,其次是北京、上海。 数据分析是个年轻的职业方向,大量的工作经验需求集中在1-3年。

对于数据分析师来说,5年似乎是个瓶颈期,如果在5年之内没有转型或者质的提升,大概以后的竞争压力会比较大。 随着经验的提升,数据分析师的薪酬也在不断提高,10年以上工作经验的人,能获得相当丰厚的薪酬。

数据分析师需求频率排在前列的技能有:SQL,Excel, SAS,SPSS, Python, Hadoop和MySQL等,其中SQL和Excel简直可以说是必备技能。 海量数据、分布式处理框架是走向高薪的正确方向。 SQL语言和传统的SAS,SPSS两大数据分析软件,能够让你在保证中等收入的条件下,能够适应更多企业的要求,也就意味着更多的工作机会。

思考和总结

对于数据分析师技能的分析是比较简陋的,在本次分析过程中,仅针对工具型的技能进行了分析。但其实,数据分析师所需要具备的素质远不止这些,还需要有扎实的数学、统计学基础,良好的数据敏感度,开拓但严谨的思维等。如果要对这些内容进行深入挖掘的话,应该会更加有趣。不过,要进行这项内容的话,需要掌握大量中文分词、关键字提取等方面的知识和技能,难度也会更高。时间所限,在这里不再进一步展开了,希望以后有时间再做一个专项分析吧。 让人忍不住吐槽的是,Python2.X环境对中文编码的支持着实不够好,在处理数据的时候消耗了大量的时间和精力,也犯了不少错,走了很多弯路。以后这一块的内容要找时间专门攻坚一下,也可以考虑换到python3平台去。

特别说明:本次数据源完全来自拉勾网,但拉勾网本身是专注于互联网相关行业的招聘平台,所以本次分析出的结论更加适用于互联网行业的相关企业,对于其他行业的企业,未必合适。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-07-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏云计算D1net

云计算技术降低了IT成本,但是降低的幅度会多大?

对于互联网企业来说,IT不仅是运营的工具,也是创新的平台,换句话说,IT不仅是成本因素,更是企业生存和发展的基础。为了开展业务,自身必须拥有大批IT专家,这些人...

3447
来自专栏数据猿

数据猿对话 | 族谱科技CEO张力铭:对大数据的看法,很多企业都扭曲了!

数据猿导读 大数据究竟是什么呢?它能做什么?为我们的生活又带来了什么改变?数据猿专门对族谱科技CEO张力铭进行了专访,由他为大家解答这些问题。 ? 来源:数据猿...

2553
来自专栏新智元

丧钟为谁为鸣 | WWDC 在即,苹果能否借Siri 扳回AI战局?

【新智元导读】科技圈内愈演愈烈的AI竞赛中,作为巨头之一的苹果似乎一直找不到存在感。Siri 推出已有五年,一直不瘟不火,最近更是受亚马逊 Alexa 以及谷歌...

3136
来自专栏罗超频道

百度用“昆仑”让中国缺“芯”的切肤之痛划上句号

7月4日,百度AI开发者大会上最引人注目的发布是百度自主研发的中国第一款云端全功能AI芯片“昆仑”,其中包含训练芯片昆仑818-300,推理芯片昆仑818-10...

933
来自专栏前沿技墅

大数据是屠龙术(暨桑文锋《数据驱动》新书首发)

1659
来自专栏AI科技大本营的专栏

在转行 AI 之前,先了解下 2018 年人工智能发展的八大趋势

本文展望了人工智能未来一年的发展趋势,希望能给相关从业者一点参考。以下是译文。

6921
来自专栏CDA数据分析师

创业公司从数据中提取出商业价值的10个思路

文 | Chynna 编译自Rahimtula Cue Ball Capital的合伙人Ali Rahimtula对数据进行深入研究,发现几个可以化为商业价值的...

1868
来自专栏镁客网

百度成立AR实验室,AI或助力DuMix成为营销利器

1706
来自专栏钱塘大数据

【大咖说】徐宗本院士:大数据与智能制造融合应用

2017中国工业大数据大会·钱塘峰会,由工信部、浙江省人民政府指导,中国工业经济联合会、信通院、互联网协会、浙江省经信委、萧山区人民政府共同主办,杭州市 经信委...

2767
来自专栏程序员的知识天地

真的要做一辈子的程序员吗?来自10年程序员的心声

经常听一些同学说:不知道下一份工作该去哪类公司做些什么,我的职场人际一团糟老板不重视我,我现在成长的非常慢所以又想跳槽了,我看不到公司的发展前景好迷茫,其实这一...

1752

扫码关注云+社区