机器学习中Bagging和Boosting的区别

Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。

首先介绍Bootstraping,即自助法:它是一种有放回的抽样方法(可能抽到重复的样本)。

1. Bagging (bootstrap aggregating)

Bagging即套袋法,其算法过程如下:

  1. 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
  2. 每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
  3. 对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

2. Boosting

其主要思想是将弱分类器组装成一个强分类器。在PAC(概率近似正确)学习框架下,则一定可以将弱分类器组装成一个强分类器。

关于Boosting的两个核心问题:

2.1 在每一轮如何改变训练数据的权值或概率分布?

通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。

2.2 通过什么方式来组合弱分类器?

通过加法模型将弱分类器进行线性组合,比如AdaBoost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器的权值。

而提升树通过拟合残差的方式逐步减小残差,将每一步生成的模型叠加得到最终模型。

3. Bagging,Boosting二者之间的区别

Bagging和Boosting的区别:

1)样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

2)样例权重:

Bagging:使用均匀取样,每个样例的权重相等

Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。

3)预测函数:

Bagging:所有预测函数的权重相等。

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

4)并行计算:

Bagging:各个预测函数可以并行生成

Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

4. 总结

这两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果,将不同的分类算法套入到此类算法框架中一定程度上会提高了原单一分类器的分类效果,但是也增大了计算量。

下面是将决策树与这些算法框架进行结合所得到的新的算法:

  1. Bagging + 决策树 = 随机森林
  2. AdaBoost + 决策树 = 提升树
  3. Gradient Boosting + 决策树 = GBDT

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-07-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法全栈工程师

机器学习(一)集成学习

1. 关于集成学习的概念   集成学习是机器学习中一个非常重要且热门的分支,是用多个弱分类器构成一个强分类器,其哲学思想是“三个臭皮匠赛过诸葛亮”。一般的弱分类...

3238
来自专栏机器学习算法原理与实践

深度神经网络(DNN)损失函数和激活函数的选择

    在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实...

591
来自专栏机器学习和数学

[深度学习] AlexNet,GoogLeNet,VGG,ResNet简化版

总结了一下这几个网络的比较重要的点,像这些经典的网络,面试的时候,估计会经常问到,怎么用自己的话说出来?不知道大家想过没有。 今天有空就总结了一下,尽量简单和通...

4329
来自专栏机器学习算法与Python学习

Machine Learning -- Boosting

本来想写随机森林的但是由于其中用到了太多提升的思想,所以就先整理整理提升的相关概念。 Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造...

3126
来自专栏Duncan's Blog

StatisticLearning

1.泛化误差/期望损失(风险函数):是理论模型f(X)关于联合分布P(X,Y)的平均意义下的损失.

842
来自专栏人工智能

机器学习集成算法——袋装法和随机森林

随机森林是最流行、最强大的机器学习算法之一。它是机器学习集成算法中的一种,可称之为自助集成(Bootstrap Aggregation)或袋装法(Bagging...

2676
来自专栏磐创AI技术团队的专栏

损失函数综述

1234
来自专栏大数据挖掘DT机器学习

统计学习方法概论

1.统计学习 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习...

2644
来自专栏计算机视觉

卷积神经网络的小基础知识

一张图就够了 batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练; iteration:1个ite...

2384
来自专栏机器学习算法与Python学习

机器学习(24)之Bagging与随机森林

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 在(机器学习(17)之集成学习...

3166

扫描关注云+社区