【推荐阅读】如何看穿数据可视化的谎言?

以前我们看到一个做得很烂的图表,或者穿帮的数据可视化作品时,往往是将它们嘲笑一番也就算了。但有些时候,尤其是刚过去的这一年,我们好像更难分辨一个可视化作品是单纯的糟糕产物,还是出于偏见而刻意制造的虚假信息。

当然,用数据来撒谎已经不是什么新鲜事儿了,但现在图表越来越容易被广泛传播,网上到处都是,而其中好多传递的是假象。你可能只是随便瞟了一眼,但一个简单的信息也可能在脑子里生根发芽。

自然而然地,现在我们需要快速看穿一个图表是否在撒谎,而这篇图文就是你贴心的指导手册哟。

1

截断数轴

左边的y轴数据从10开始,纯粹的瞎话。右边的数据从0开始,很好。

长度是柱状图视觉呈现的关键,所以当某些人通过截断数轴而故意把长度缩短时,整个图表的差别就变得更明显了。这些人想要展现出比实际情况更剧烈的变化。我在另一篇文章里详细谈了这个问题。

2

双重数轴

它用了两种差距极大的比例,可能是为了强行扯上因果关系。

通过使用双重数轴,数据的量级可以根据两种度量来缩小或扩张。人们通常用它来表达相关度和因果关系。“因为这个东东,另一个事儿发生了,看,很清楚吧。”

Tyler Vigen做的假相关数据的项目是个极好的例子。

3

总和不对头

饼图中所有部分的比例加起来超过了100%。

一些图表专门要展示总体中的某些部分,而当这些部分加起来超过了总和,问题就很大了。比如,饼图代表的是总共100%,而如果每个扇形的比例加起来超过了100%?怪怪的噢。

可以看看这个搞笑的例子。

4

只看绝对值

这其实只是人口分布图。当你对比不同地方、种类或群体时,你必须考虑相对值,公平比较

任何事物都是相对的。你不能因为某个城镇发生了两起抢劫案,另一个只发生了一起,就说第一个镇更危险。万一第一个镇的人口是第二个的一千倍呢?更有效的方式往往是对比百分数和比例,而非绝对值和总值。

这幅xkcd的漫画很直白地展现了人口绝对数的影响。

5

有限范围

左图看上去增幅很大,但右图显示出这只是常态,且选定时间内的增幅实际并不明显。

人们倾向于精心挑选日期和时间段来配合特定的叙事,所以更应该考虑到历史背景、时常发生的事件,以及合理的用来比较的基准。

当你研究全局时,可能会发现有趣的事情。

6

奇怪的分级

左图只有两个分级,大于1的究竟包括些什么?可能在打掩护。右图更好,展示了更多变量。

有些可视化作品会过分简化一个复杂的模型,而非展示出原数据中完整的变量范围。这样做很容易会把一个连续的变量转化为从属于某一类别的变量。

广泛的分级在某些情况下很有用,但复杂性往往才是事物的意义所在。要防止过分简化。

7

混乱的面积比

30是10的三倍,但或许是为了增加显著性,图上最大的矩形比最小的大得可不止三倍。

如果按照面积来进行视觉上的编码,图形的大小比例就该是面积的比例。有些人却在做面积编码的可视化时,改变边长的比例来突出大小对比,完全是为了抓马啊。

有时这种错误是无意间造成的,更需要警觉。

8

操控面积维度

上下两个图形的面积相等,但看上去很不一样。

或许有人懂得怎么用面积来做视觉编码,却还(gu)是(yi)做出了上图这样的东西。我还没见过如此夸张的例子,但以后说不定就会有。我打赌连象形图都能出现,等着瞧吧。

9

为了三维而三维

当你看到一个明明没必要还强行用三维的图表,请质疑它的数据、图表、作者及图表衍生出的任何事物。

划重点

如果一个可视化作品出现了以上任何问题,并不代表它一定在撒谎。正如Darrell Huff在《如何用数据撒谎》里说的:“本书的标题和里面一些内容可能像是在说,所有类似的作品都是为欺骗而生的产物。美国统计协会一个分会的主席曾经因为这个批评我,他觉得与其说出于欺骗,倒更像是能力不足。”

当然,这并不等于就可以原谅,毕竟也做错了嘛。但记住这点,你在骂某某某是骗子之前就可以再考虑考虑。

我的经验是,仔细检查那些令人震惊的、比想象中更具戏剧性的图表。

图表并不能让虚假的信息变成真的,数据也不能。它们会屈从于做图的人,也展示出信息本身之外更多的东西。那么,睁大你的眼睛咯。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-09-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏奇点大数据

遗传算法(1)

与其说遗传算法是一个算法,不如说是一种处理问题的思想方式更为恰当,因为遗传算法整个体系说来说去都是在说对于一种问题处理的思路和原则,而不是一个具体的代码编写过...

2887
来自专栏华章科技

这是有史以来第一部由人工智能做编剧的电影短片。。。

就在前几天的伦敦科幻电影节的48小时短片制作挑战赛上,导演 Oscar Sharp (奥斯卡·夏普,下文称夏普),和来自纽约大学人工智能领域的研究者 Ross ...

605
来自专栏专知

【干货】一文教你构建图书推荐系统(附代码)

1472
来自专栏趣学算法

算法为什么那么难?——算法学习秘籍

(1)我们学习了那些经典的算法,在惊叹它们奇思妙想的同时,难免疑虑重重:这么刁,怎么想到的?对学生来说,这可能是最费解、也最让人窝火的地方。高手讲,学算法要学它...

782
来自专栏新智元

【珍藏】CMU大师对软件工程师的系统建议(附书和论文下载)

【新智元导读】软件工程师想学机器学习,有什么好建议?机器学习专家、卡耐基梅隆大学教授、1-Page公司首席科学家 Alex Smola 在 Quora 上给出了...

3607
来自专栏大数据挖掘DT机器学习

【趣味】数据挖掘(5)—分房与分类

中老年回顾歌曲集中有这样一首歌:月亮在白莲花般的云朵里穿行,晚风吹来一阵阵欢乐的歌声,我们坐在高高的谷堆旁边,听妈妈讲那过去的事情……   歌词美,旋律也美...

2673
来自专栏IT派

Python数据分析与挖掘学习路线图

语言的学习,真正掌握语言的方式,是交流与实践,所以,这三本书,是由浅入深的步骤。大家在学习过程中,可以到群里面去进行交流沟通。

512
来自专栏AI研习社

最知名的5个机器学习框架,知道一个说明你入门了

AI 研习社消息:业内知名数据科学网站 KDnuggests,昨日评选出了四月份“你不可忽视的五个机器学习项目”。 你可能没听过它们,但今天或许会考虑上手。至于...

4289
来自专栏PPV课数据科学社区

一条通往数据科学家的必经之路!

经常有人问我“要成为数据挖掘工程师或者数据科学家应该读什么书?”类似的问题。下面是一份建议书单,同时也是成为数据科学家的指南,当然,这不包括取得合适大学学位的要...

3196
来自专栏AI科技大本营的专栏

AI 技术讲座精选:数学不好,也可以学习人工智能(七)——自然语言处理的奇妙神奇之处

机器都能做到吗? 我现在是任由自动化左右吗? 未来AI会让作家失业吗? 请阅读本文。 编译 | AI100 在本系列的第五部分中发现了卷积神经网络...

2839

扫码关注云+社区