【推荐阅读】如何看穿数据可视化的谎言?

以前我们看到一个做得很烂的图表,或者穿帮的数据可视化作品时,往往是将它们嘲笑一番也就算了。但有些时候,尤其是刚过去的这一年,我们好像更难分辨一个可视化作品是单纯的糟糕产物,还是出于偏见而刻意制造的虚假信息。

当然,用数据来撒谎已经不是什么新鲜事儿了,但现在图表越来越容易被广泛传播,网上到处都是,而其中好多传递的是假象。你可能只是随便瞟了一眼,但一个简单的信息也可能在脑子里生根发芽。

自然而然地,现在我们需要快速看穿一个图表是否在撒谎,而这篇图文就是你贴心的指导手册哟。

1

截断数轴

左边的y轴数据从10开始,纯粹的瞎话。右边的数据从0开始,很好。

长度是柱状图视觉呈现的关键,所以当某些人通过截断数轴而故意把长度缩短时,整个图表的差别就变得更明显了。这些人想要展现出比实际情况更剧烈的变化。我在另一篇文章里详细谈了这个问题。

2

双重数轴

它用了两种差距极大的比例,可能是为了强行扯上因果关系。

通过使用双重数轴,数据的量级可以根据两种度量来缩小或扩张。人们通常用它来表达相关度和因果关系。“因为这个东东,另一个事儿发生了,看,很清楚吧。”

Tyler Vigen做的假相关数据的项目是个极好的例子。

3

总和不对头

饼图中所有部分的比例加起来超过了100%。

一些图表专门要展示总体中的某些部分,而当这些部分加起来超过了总和,问题就很大了。比如,饼图代表的是总共100%,而如果每个扇形的比例加起来超过了100%?怪怪的噢。

可以看看这个搞笑的例子。

4

只看绝对值

这其实只是人口分布图。当你对比不同地方、种类或群体时,你必须考虑相对值,公平比较

任何事物都是相对的。你不能因为某个城镇发生了两起抢劫案,另一个只发生了一起,就说第一个镇更危险。万一第一个镇的人口是第二个的一千倍呢?更有效的方式往往是对比百分数和比例,而非绝对值和总值。

这幅xkcd的漫画很直白地展现了人口绝对数的影响。

5

有限范围

左图看上去增幅很大,但右图显示出这只是常态,且选定时间内的增幅实际并不明显。

人们倾向于精心挑选日期和时间段来配合特定的叙事,所以更应该考虑到历史背景、时常发生的事件,以及合理的用来比较的基准。

当你研究全局时,可能会发现有趣的事情。

6

奇怪的分级

左图只有两个分级,大于1的究竟包括些什么?可能在打掩护。右图更好,展示了更多变量。

有些可视化作品会过分简化一个复杂的模型,而非展示出原数据中完整的变量范围。这样做很容易会把一个连续的变量转化为从属于某一类别的变量。

广泛的分级在某些情况下很有用,但复杂性往往才是事物的意义所在。要防止过分简化。

7

混乱的面积比

30是10的三倍,但或许是为了增加显著性,图上最大的矩形比最小的大得可不止三倍。

如果按照面积来进行视觉上的编码,图形的大小比例就该是面积的比例。有些人却在做面积编码的可视化时,改变边长的比例来突出大小对比,完全是为了抓马啊。

有时这种错误是无意间造成的,更需要警觉。

8

操控面积维度

上下两个图形的面积相等,但看上去很不一样。

或许有人懂得怎么用面积来做视觉编码,却还(gu)是(yi)做出了上图这样的东西。我还没见过如此夸张的例子,但以后说不定就会有。我打赌连象形图都能出现,等着瞧吧。

9

为了三维而三维

当你看到一个明明没必要还强行用三维的图表,请质疑它的数据、图表、作者及图表衍生出的任何事物。

划重点

如果一个可视化作品出现了以上任何问题,并不代表它一定在撒谎。正如Darrell Huff在《如何用数据撒谎》里说的:“本书的标题和里面一些内容可能像是在说,所有类似的作品都是为欺骗而生的产物。美国统计协会一个分会的主席曾经因为这个批评我,他觉得与其说出于欺骗,倒更像是能力不足。”

当然,这并不等于就可以原谅,毕竟也做错了嘛。但记住这点,你在骂某某某是骗子之前就可以再考虑考虑。

我的经验是,仔细检查那些令人震惊的、比想象中更具戏剧性的图表。

图表并不能让虚假的信息变成真的,数据也不能。它们会屈从于做图的人,也展示出信息本身之外更多的东西。那么,睁大你的眼睛咯。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-09-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

我是如何从物理学转行到数据科学领域

很多人问我是如果从物理学转行到数据科学,本文讲述了关于我为什么决定成为一名数据科学家,以及我是如何追求并实现目标的。希望能够最终鼓励更多的人追求自己的梦想。让我...

932
来自专栏CDA数据分析师

以电商为例,说说数据分析的5个思维方法

数据分析真的很重要,能从一堆看似杂乱的数据里,找到问题并解决问题。从数据上的变化,来判断甄别效果得失;简直是居家旅行,运营生意的必备良品。 首先,我们要知道,...

18210
来自专栏人工智能头条

争议:婚恋网站的推荐系统,怎么做才能让用户不用再回家相亲?

1883
来自专栏AI2ML人工智能to机器学习

机器学习模型常见对比

在“R语言和表数据分析”, 我们对常见的数据预处理流程给出一个大致的解决方案, 在这个基础上, 才能很好的谈数据质量data quality, 否则只是Garb...

802
来自专栏维恩的派VNPIE

在Python中使用QuantLib

相比TA-Lib在技术分析领域的地位,QuantLib在金融工程领域的地位可以说有过之而无不及。

962
来自专栏大数据文摘

一位16岁CEO教你如何在高中阶段入门人工智能

1618
来自专栏量子位

机器学习项目到处都是坑?你需要谷歌的工程实践“葵花宝典”

今天,谷歌开发者推特账号终于上线了《机器学习规则(Rules of Mahchine Learning)》的中文版(撒花.gif)。

1083
来自专栏DT数据侠

信息过载叫苦不迭?机器学习教你如何将文本化繁为简

你在工作、学习中是否曾因信息过载叫苦不迭?有一种方法能够替你读海量文章,并将不同的主题和对应的关键词抽取出来,让你谈笑间观其大略。本文数据侠就使用Python对...

610
来自专栏大数据文摘

学界丨Hinton胶囊网络代码低调开源,GitHub链接你找得到吗?

1214
来自专栏机器学习算法与Python学习

超强干货 | Python金融数据量化分析教程+机器学习电子书

1522

扫描关注云+社区