人人都应该掌握的9种数据分析思维

说到数据分析,啤酒和尿布的例子大家应该都听腻了。再具体、深入一些的内容,往往因为数学就令很多人望而却步了。给大家分享9个不带数学推导的数据分析思路,希望大家能喜欢~

1. 分类

分类分析的目标是:给一批人(或者物)分成几个类别,或者预测他们属于每个类别的概率大小。

举个栗子:“京东的用户中,有哪些会在618中下单?”这就是个典型的二分类问题:买or不买。

分类分析(根据历史信息)会产出一个模型,来预测一个新的人(或物)会属于哪个类别,或者属于某个类别的概率。结果会有两种形式:

形式1:京东的所有用户中分为两类,要么会买,要么不会买。

形式2:每个用户有一个“会买”,或者“不会买”的概率(显然这两个是等效的)。“会买”的概率越大,我们认为这个用户越有可能下单。

如果为形式2画一道线, 比如0.5,大于0.5是买,小于0.5是不买,形式2就转变成形式1了。

2. 回归

回归任务的目标是:给每个人(或物)根据一些属性变量来产出一个数字(来衡量他的好坏)。

举个栗子:每个用户在618会为京东下单多少钱的?

注意回归和分类的区别在:分类产出的结果是固定的几个选项之一,而回归的结果是连续的数字,可能的取值是无限多的。

3. 聚类

聚类任务的目标是:给定一批人(或物),在不指定目标的前提下,看看哪些人(或物)之间更接近。

注意聚类和上面的分类和回归的本质区别:分类和回归都会有一个给定的目标(是否下单,贷款是否违约,房屋价格等等),聚类是没有给定目标的。

举个栗子:给定一批用户的购买记录,有没有可能分成几种类型?(零食狂魔,电子爱好者,美妆达人……)

4. 相似匹配

相似匹配任务的目标是:根据已知数据,判断哪些人(或物)跟特定的一个(一批)人(或物)更相似。

举个栗子:已知一批在去年双十一下单超过10000元的用户,哪些用户跟他们比较相似?

5. 频繁集发现

频繁集发现的目标是:找出经常共同出现的人(或物)。这就是大名鼎鼎的“啤酒和尿布”的例子了。 这个例子太容易扩展,就不再举栗子啦。

6. 统计(属性、行为、状态)描述

统计描述任务的目标是最好理解的:具有哪些属性的人(或物)在什么状态下做什么什么事情。

举个栗子:5月份一个月内每个用户在京东7天内无条件退货的次数

统计描述常常用户欺诈检测,试想一个用户一个月退货100+次,这会是一种什么情况?

7. 连接预测

连接预测的目标是:预测本应该有联系(暂时还没有)的人(或物)。

举个栗子:你可能认识xxx?你可能想看xxx?

8. 数据压缩

数据压缩的目的是:减少数据集规模,增加信息密度。

举个栗子:豆瓣想分析用户关于国外电影的喜好,讲国内电影的评分数据都排除掉

大数据,也不是数据越多越好,数据多带来的信息多,但是噪声也会变多。

9. 因果分析

顾名思义,因果分析的目标是:找出事物间相互影响的关系。

举个栗子:广告的效果提升的原因是广告内容好?还是投放到了更精准的用户?

这里最常见的手段就是A/B test啦

数据分析是非常强大的,不过当然还是要在具体的情景下,严格的选择假设,采用科学的分析方法才能产出有价值的结果。数据会说谎的经典案例就是“安慰剂效应”了。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-09-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

学界 | 宅男的福音:用GAN自动生成二次元萌妹子

46711
来自专栏AI科技大本营的专栏

OpenAI公布强化学习新算法,可控制复杂机器人

近日,OpenAI 发布了一种新型的强化学习算法:近端策略优化(Proximal Policy Optimization,简称 PPO),这种算法不但在性能上比...

3259
来自专栏大数据文摘

视频更新|斯坦福CS231n深度学习与计算机视觉课时18-卷积神经网络的可视化与进一步理解(上)

1644
来自专栏AI科技评论

干货 | 5年提速500倍,英伟达GPU创纪录突破与技术有哪些?

英伟达 Volta Tensor Core GPU 在深度学习社群取得了哪些巨大突破?这些突破背后有什么核心技术?

1113
来自专栏PPV课数据科学社区

多模型融合推荐算法——从原理到实践

1 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小说网站里的作品、招聘网站里的职位...

3407
来自专栏数据派THU

独家 | 一文解析统计学在机器学习中的重要性(附学习资源)

本文共2400字,建议阅读10分钟。 本文介绍为什么统计对于通用应用和机器学习如此重要,并大致了解各种可用的方法。

1014
来自专栏大数据文摘

视频更新|斯坦福CS231n深度学习与计算机视觉课时14-卷积神经网络详解(上)

1262
来自专栏用户2442861的专栏

机器学习系列(7)_机器学习路线图(附资料)

http://blog.csdn.net/han_xiaoyang/article/details/50759472

661
来自专栏数据科学与人工智能

【机器学习】机器学习和数据挖掘的推荐书单

《机器学习实战》:本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic...

2528
来自专栏CDA数据分析师

入门:机器学习和数据挖掘推荐书单

有了这些书,再也不愁下了班没妹纸该咋办了。慢慢来,认真学,揭开机器学习和数据挖掘这一神秘的面纱吧! ? 《机器学习实战》:本书第一部分主要介绍机器学习基础,以及...

26110

扫码关注云+社区