【动向】2018年深度学习的10大预测

我有种预感,2018年将会是发生巨大变化的一年。我们在2017年所看到的那些令人难忘的成就将在2018年以非常强大的方式延续。2017年的研究工作将进一步转化为日常的软件应用。

下面是我整理的一份关于2018年深度学习的预测清单:

1.大多数深度学习硬件初创公司将会失败

许多深度学习硬件初创企业将在2018年最终交付他们的芯片。也许这会导致破产,因为他们忘记提供好的软件来支持他们的新解决方案。这些公司让硬件作为他们的DNA。但不幸的是,在DL领域,软件同样重要。这些初创公司大多不懂软件,也不了解开发软件的成本。这些公司可能会提供芯片,但没有任何系统可以支持软件运行。

采用收缩阵列解决方案的低成果已经被采用,所以我们不会在2017年发现大规模的10倍性能升级。研究人员将开始使用这些张量核,不仅用于推理,还可以加速训练。

令人感到失望的是英特尔的解决方案将继续被推迟。目前谁也无法猜测该公司何时能推出。

随着TPU的发展,Google将继续给世界带来惊喜。也许Google通过将其IP授权给其他半导体厂商来进入硬件行业。如果它是除了Nvidia以外唯一真正的玩家,这将会很有意义的。

2.元学习将是新的SGD

2017年出现了很多有关元学习的强大研究。随着研究群体对元学习的理解越来越深入,随机梯度下降(SGD)的旧方式将会落到实处,取而代之的是一种更有效的方法,既可以利用开发性的搜索方法,也可以采用探索性的搜索方法。

无监督学习的进展将是渐进的,但主要是由元学习算法驱动。

3.生成一种新的建模

目前,大多数研究都是在生成图像和语音的过程中进行的。但是,我们应该将这些方法结合到建模复杂系统的工具中。您将会看到这个活动的一个领域就是应用深度学习来进行经济建模。

4.自我演奏是自动化的知识创造

AlphaGo Zero和AlphaZero从零开始学习和自我娱乐是一个巨大的飞跃。在我看来,它与深度学习的出现有着同样的影响。深度学习发现了通用相似函数。RL自我娱乐发现了普遍的知识创造。

期待看到更多与自我娱乐相关的进展。

5.直觉机器将弥合语义鸿沟

这是我最雄心勃勃的预测。我们将跨越直觉机器和理性机器之间的语义鸿沟。双过程理论(两种认知机器的概念,一种是无模型的,另一种是基于模型的) 将是如何构建新AI的更流行的概念。2018年,人为直觉的概念将不再是一种附带的概念,更多的是被普遍接受的概念。

6.解释能力是无法实现的—我们只能假装

解释能力有两个问题:第一个问题,这种解释对人类来说有太多的规则,让人难以理解;第二个问题,是机器将会产生完全陌生且无法解释的概念。我们已经在AlphaGo Zero和Alpha Zero的战略中看到了这一点。

简而言之,解释性机器的目的是要理解人类能够直观地理解或能够理解的种类的解释。然而,在大多数情况下,人类将无法获得完整的解释。

我们必须通过创造“虚假的解释”来在深度学习中取得进展。

7.深入学习的研究信息会下降

对于深度学习研究的人们来说,2017年已经很困难了。ICLR 2018年会议提交的论文数量约为4000份。研究人员每天只能阅读10篇论文,仅仅是为了赶上这个会议。

在这个领域,问题越来越严重,因为理论框架都在进行中。为了在理论空间上取得进步,我们需要寻找更高级的数学,这能给我们更好的认识。这将成为一个难题,因为大多数深度学习的研究人员不具备正确的数学理论来理解这类系统的复杂性。深度学习需要来自复杂性理论的研究人员,但这类研究人员非常少。

2018年,深度学习研究论文可能会翻三番或四翻。

8.工业化是通过教学环境来实现的

通过对具体教学环境的开发,可以实现对深度学习系统可预测和可控制的开发。如果你想找到最原始的教学方法,你只需要看看深度学习网络是如何训练的。在这方面我们将会看到更多的进展。

期待看到更多的公司透露他们的内部基础设施,解释他们如何部署深度学习。

9.会话认知的出现

我们衡量进展的方式已经过时了。现在,提出了一种解决现实世界动态(即非平稳)复杂性的新方式。我们应该在新的一年里看到更多关于这个新领域的报道。

10.我们将要求在道德上使用AI

道德上使用AI的需求将会增加。现在,人们越来越意识到自动化失控所带来的灾难性后果。我们今天在Facebook、Twitter、谷歌、Amazon等网站上发现的过于简单的自动化也许将来会对社会造成不良影响。

我们需要了解部署能够预测人类行为的机器的道德规范。面部识别是我们掌握的危险功能之一。能够产生与现实难以区分的媒体的算法将成为一个主要问题。理论上,我们需要知道,自己只是为了整个社会的利益而使用AI,而不是增加不平等的武器。

准备冲击!

2018年将是重要的一年,我们要做好充分的准备,迎接新机遇!

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-01-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

是的,人工智能就是分析

关于人工智能究竟是什么,以及人工智能的学科应该如何分类,似乎存在一些混淆。人工智能是分析学的一种形式,还是一门与分析学不同的全新学科?我坚信人工智能与预测分析和...

2654
来自专栏人工智能头条

京东DNN实验室:大数据、深度学习与计算平台的实践

1504
来自专栏程序员互动联盟

多年Java开发研究机器学习技术需要哪些基础?

多年的java开发经验切入到新的领域,需要熟悉的新规则和技巧。 但对于人工智能来说,不是简单的熟悉一下新的规则那么简单的事情了,主要人工智能是一个综合性极强,...

35312
来自专栏PHP在线

人工智能和工作的未来

原文出处: Lukas Biewald 译文出处:腊八粥 技 术淘汰了某些种类的工作,并创造了其它种类的工作——从石器时代就是如此。在过去,机器取代了需要...

36812
来自专栏AI科技大本营的专栏

方兴未艾的语音合成技术与应用

作者简介:李秀林,中国科学院博士,15 年语音相关技术研发和学术研究,申请专利三十余项,在国内外语音界有很高的知名度;曾带领团队获得百度百万美元大奖。2006 ...

804
来自专栏华章科技

数据科学领域的一张网红图

数据科学、机器学习、大数据、认知计算……我们几乎每天都被铺天盖地的关于这些概念的文章和观点包围着。但有一点是肯定的:别妄想一夜成为数据科学家。这条路很漫长,也充...

522
来自专栏机器之心

业界 | 快手科技李岩:多模态技术在产业界的应用与未来展望

李岩在演讲中表示,多模态技术有两大应用方向,一是会改变人机交互的方式,二是将使信息分发更加高效;视频本身就是一个多模态的问题,而快手则拥有海量的多模态数据,多模...

783
来自专栏AI科技评论

业界 | 想要快速的搭建高性能机器学习系统,企业应该怎么干?

AI科技评论按:本文为「范式大学系列课程」。Web服务器部署在云上已经算是常见的事情了,那么机器学习系统如何呢? ? 亚马逊AWS目前的运维水平成为行业标准,但...

2764
来自专栏专知

机器学习模型在工业界真的创造价值了么?

【导读】看到标题你可能会有疑惑,因为我们可能经常听到的是“你在实际应用中如何使用机器学习模型的”。本文正是数据科学家Venkat Raman关于“机器学习在工业...

3466
来自专栏PPV课数据科学社区

如何成为一名卓越的数据科学家——开篇七剑

关于作者: 杨滔,桃树科技(TaoData)创始人,专注于下一代人工智能产品的研发、应用与商业化。拥有超过十年机器学习研究与应用经验。奥克兰大学机器学习博士,悉...

39810

扫码关注云+社区