大数据要经得起三问:从哪来?怎么用?谁买单?

当我们面对一项大数据应用时,只要简单问一问3个问题——数据哪里来、数据怎么用、成果谁买单——就能揭开许多“伪装”。日前由中国管理科学学会大数据管理专委会、国务院发展研究中心产业互联网课题组发布的《大数据应用蓝皮书:中国大数据应用发展报告No.1(2017)》指出,如许多应用并没有可靠的数据来源,或者数据来源不具备可持续性;还有些应用并没有技术或市场支撑,只是借助大数据风口套取政府部门或一些投资者的“傻钱”罢了。当然,如果经得起上述“大数据三问”,也并不一定算得上优秀,但也离优秀的大数据应用不远了。

1数据从哪里来

关于数据来源,普遍认为互联网及物联网是产生并承载大数据的基地。互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据金矿,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据。

资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,如房地产交易、大宗商品价格、特定群体消费信息,等等。从严格意义上说,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,也是当前在国内比较常见的应用资源。

在国内还有一类是政府部门掌握的数据资源,普遍认为质量好、价值高,但开放程度差。许多官方统计数据通过灰色渠道流通出来,经过加工成为各种数据产品。2015年,国务院印发的《促进大数据行动纲要》把公共数据互联开放共享作为努力方向,认为大数据技术可以实现这个目标。实际上,长期以来政府部门间信息数据相互封闭割裂是治理问题而不是技术问题。面向社会的公共数据开放愿望虽十分美好,但恐怕一段时间内可望而不可即。在数据资源方面,国内“小数据”、“中数据”应用并不充分,试图一步跨入大数据时代,借机一并解决前期信息化过程中没能解决的问题,前景并不乐观。另外,由于中国互联网公司业务主要在国内,其大数据资源也不是全球性的。

蓝皮书分析指出,“数据从哪里来”是我们评价大数据应用的第一个关注点。一是要看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是“富矿”还是“贫矿”,能否保障这个应用的实效。

2数据怎么用

“数据怎么用”是我们评价大数据应用的第二个关注点。大数据纲要规划了许多大数据应用领域和方向,包括公共部门和产业领域,实际上是提出了许多需要大数据解决的问题或期待大数据完成的任务。如何解决这些问题,如何把数据资源转化为解决方案,实现产品化,这是我们特别关注的问题。大数据只是一种手段,并不能无所不包、无所不用。我们关注大数据能做什么、不能做什么,现在看来,大数据主要有以下几种较为常用的功能。

追踪。互联网和物联网无时无刻不在记录,大数据可以追踪、追溯任何一个记录,形成真实的历史轨迹。追踪是许多大数据应用的起点,包括消费者购买行为、购买偏好、支付手段、搜索和浏览历史、位置信息,等等。

识别。在对各种因素全面追踪的基础上,通过定位、比对、筛选,可以实现精准识别,尤其是对语音、图像、视频进行识别,使可分析内容大大丰富,得到的结果更为精准。

画像。通过对同一主体不同数据源的追踪、识别、匹配,形成更立体的刻画和更全面的认识。对消费者画像,可以精准推送广告和产品;对企业画像,可以准确判断其信用及面临的风险。

提示。在历史轨迹、识别和画像基础上,对未来趋势及重复出现的可能性进行预测,当某些指标出现预期变化或超预期变化时给予提示、预警。以前也有基于统计的预测,大数据大大丰富了预测手段,对建立风险控制模型有深刻意义。

匹配。在海量信息中精准追踪和识别,利用相关性、接近性等进行筛选比对,更有效率地实现产品搭售和供需匹配。大数据匹配功能是互联网约车、租房、金融等共享经济新商业模式的基础。

优化。按距离最短、成本最低等给定的原则,通过各种算法对路径、资源等进行优化配置。对企业而言,提高服务水平、提升内部效率;对公共部门而言,节约公共资源、提升公共服务能力。

上述概括并不一定完备,大数据肯定还有其他更好的功能。当前许多貌似复杂的应用,大都可以细分成以上几种类型。例如,贵州推行的“大数据精准扶贫项目”,从大数据应用角度,通过识别、画像,可以对贫困户实现精准筛选和界定,找对扶贫对象;通过追踪、提示,可以对扶贫资金、扶贫行为和扶贫效果进行监控和评估;通过配对、优化,可以更好发挥扶贫资源的作用。这些功能也并不都是大数据所特有的,只是大数据远远超出以前的技术,可以做得更精准、更快、更好。当然,技术无法左右利益,贵州扶贫目标的完成,并不是有了大数据就万事大吉了。

3成果谁买单

“成果谁买单”是评价大数据应用的第三个也是最后一个关注点。道理很简单,不创造价值的应用不是好应用。能不能创造价值,关键看谁买单。我们不需要那些靡费公帑的“样板”工程、“面子”工程,也不需要那些炫耀神技、制造概念的创富故事。我们关注大数据的应用是否实实在在提升能力、改善绩效。如果大数据用于自身的产品设计、营销推广、资源配置,那就看企业竞争力是不是提升了,看企业最终是不是比以前更赚钱了。如果大数据用于为第三方提供服务,那就看是不是有人愿意付费、愿意持续付费。但如果是用于公共领域,还要看政府或公共部门的付费值不值,不仅仅是从出资方的视角看值不值,还要从老百姓的视角看值不值。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-10-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人称T客

人工智能报告:未来很光明 现状很灰暗

T客汇官网:tikehui 撰文 |张珅健 在距离首次登上历史舞台数十年后,人工智能正在经历一轮新的重生。 最新一波的快速创新浪潮正在捕捉AI对全球人类工作...

2879

物联网(IoT)在企业应用中的三个例子

通过将物联网(IoT)设备集成到当前的IT基础设施中,企业能有良好的收益。而一旦通过设备捕获数据,并且分析和处理数据,才会发现物联网(IoT)的真正价值和影响。

3177
来自专栏区块链领域

有备而来,IMGame携500+游戏打造区块链游戏新引擎

随着智能手机的普及,游戏已经是手机用户必不可少的娱乐项目。2017年全球游戏玩家首次突破20亿,游戏市场规模突破了1000亿美元,其中移动端是主导并成为游戏行业...

2924
来自专栏新智元

为什么说“开源”已经失败:让穷人越来越穷,富人越来越富!

【新智元导读】今年是“开源”这个词诞生20周年。与近期对开源的一片溢美之词相比,本文的观点刚好相反。文章认为,开源软件是危险的,它不仅不能减缓贫富差距的扩大和知...

401
来自专栏大数据文摘

车品觉:大数据如何帮助企业决策

1513
来自专栏灯塔大数据

实录|中国电信云计算重点实验室执行副主任在《CDAS2016第三届中国数据分析师行业峰会》的报告

注: 2016年9月4日,CDAS2016第三届中国数据分析师行业峰会在北京国际会议中心成功举办,中国电信云计算重点实验室执行副主任杨明川主任,在峰会上做了题...

2687
来自专栏人称T客

微信正在成为企业管理中的“癌症”

创业这么久很多人会问我最难的什么?当你不再为生计发愁的时候,当你有一个规模不大的小团队的时候,考验创业者的不是商业模式,不是有没有业务,也不是现金流是否充足,而...

3276
来自专栏光荣与梦想1987

为什么中国互联网社交被腾讯垄断?

关于腾讯和Facebook的差异,我一直都在思考。两家公司到底有什么不同?这几年我找到了一些答案,目前也还在继续探索。现在可以初步的回答一下上面的问题:

1132
来自专栏数据猿

投稿 | 达观数据CEO陈运文:大数据挖掘技术在企业创新中的应用

<数据猿导读> 随着互联网时代的大发展,数据记录逐步脱离了纸笔的限制,与此同时,数据的概念也在进一步拓宽。大数据时代涌现出了大量新型数据的、非结构化的数据,对这...

3376
来自专栏数据的力量

扎克伯格:最大的风险就是不冒风险

993

扫码关注云+社区