大数据时代:十大最热门的大数据技术

随着 大数据分析 市场快速渗透到各行各业,哪些大数据技术是刚需?哪些技术有极大的潜在价值?根据弗雷斯特研究公司发布的指数,这里给出最热的十个大数据技术。

预测分析: 预测分析 是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。随着现在硬件和软件解决方案的成熟,许多公司利用大数据技术来收集海量数据、训练模型、优化模型,并发布预测模型来提高业务水平或者避免风险;当前最流行的预测分析工具当属IBM公司的SPSS,SPSS这个软件大家都已经很熟悉了,它集数据录入、整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,SPSS的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上。

NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。

搜索和认知商业:当今时代大数据与分析已经发展到一个新的高度,那就是认知时代,认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式,例如前段时间的围棋大战,就是一个很好的应用、现已经逐步推广到机器人的应用上面,也就是下一个经济爆发点——人工智能,互联网人都比较熟悉国内的BAT,以及国外的apple、google、facebook、IBM、微软、亚马逊等等;可以大致看一下他们的商业布局,未来全是往人工智能方向发展,当然目前在认知商业这一块IBM当属领头羊,特别是当前主推的watson这个产品,以及取得了非常棒的效果。

流式分析:目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站、博客、电子邮件、视频、新闻、电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析平台有很多、如开源的spark,以及ibm的 streams 。

内存数据结构:通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;

分布式存储系统:分布式存储是指存储节点大于一个、数据保存多副本以及高性能的计算网络;利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。当前开源的HDFS还是非常不错,有需要的朋友可以深入了解一下。

数据可视化:数据可视化技术是指对各类型数据源(包括hadoop上的海量数据以及实时和接近实时的分布式数据)进行显示;当前国内外数据分析展示的产品很多,如果是企业单位以及政府单位建议使用 cognos ,安全、稳定、功能强大、支持大数据、非常不错的选择。

数据整合:通过亚马逊弹性MR(EMR)、Hive、Pig、Spark、MapReduce、Couchbase、Hadoop和MongoDB等软件进行业务数据整合;

数据预处理:数据整合是指对数据源进行清洗、裁剪,并共享多样化数据来加快数据分析;

数据校验:对分布式存储系统和数据库上的海量、高频率数据集进行数据校验,去除非法数据,补全缺失。

数据整合、处理、校验在目前已经统称为 ETL ,ETL过程可以把结构化数据以及非结构化数据进行清洗、抽取、转换成你需要的数据、同时还可以保障数据的安全性以及完整性、关于ETL的产品推荐使用 datastage 就行、对于任何数据源都可以完美处理。

原文发布于微信公众号 - 钱塘大数据(qtbigdata)

原文发表时间:2017-10-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

一文读懂BI商业智能与大数据应用的区别

之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。 BI(BusinessIntelligence)即商务...

3386
来自专栏包子铺里聊IT

乘风大数据,就业拿高薪

最近一周,硅谷的明星创业公司Palantir完成了最新一轮4.5亿美金的融资,估值超过200亿美金。大数据,以及之后的数据挖掘和智能分析,让Palantir拿到...

2687
来自专栏云计算D1net

云存储运用:避免走进迷雾森林

当前,在大数据时代下,数据正在呈现爆炸式增长态势,随着数据量的几何级数增长以及信息化的深入,各种规模的企业对于购买存储设备的需求越来越迫切。大多数企业已经认识到...

2924
来自专栏云技术

全面布局“边” “端”,腾讯云边缘计算技术探索及落地应用

我们已经进入了中心与边缘互相协作,共同助力各行各业数字化转型的时代。随着物联网的发展,未来的网络结构必定是“云—边—端”的模式。腾讯云在强大的云端能力之外,正在...

3795
来自专栏PPV课数据科学社区

【资讯】大数据分析项目成功的五项基本原则

大数据市场目前的焦点问题是:从社交网络、APP和市场调查等多种数据源收集海量数据容易,但真正产生商业价值的大数据分析项目的实施依然很难。 ...

2486
来自专栏云计算D1net

云计算:节能之路

有人把云计算技术视为个人电脑、互联网之后的第三次革新浪潮,认为它即将甚至已经从根本上改变整个信息产业的格局,改变人类使用计算机的习惯和方式,因此云计算技术得到了...

3236
来自专栏非著名程序员

今天 Google 回来了,好像又走了

1432
来自专栏挖掘大数据

详解10个最热门的大数据技术

随着大数据分析市场快速渗透到各行各业,哪些大数据技术是刚需?哪些技术有极大的潜在价值?根据弗雷斯特研究公司发布的指数,这里给出最热门的十个大数据技术。

20010
来自专栏EAWorld

数据质量问题是“技术”问题还是“业务”问题?

? 是不是感觉漫画中的场景很熟悉?没错,这种场景几乎每天都在企业中重复上演。 一、数据质量问题的危害 当前越来越多的企业认识到了数据的重要性,数据仓库、大数据...

3299
来自专栏CDA数据分析师

译文|大数据对中小企业意味着什么?

大企业or小企业 对于中小企业在小型和个人数据集上使用大数据技术,我能看到大量优势,但是对它们而言也有很多理由来关注一下大数据本身。最近的一项调查中...

1768

扫描关注云+社区