发现 | 基于深度学习的自动上色程序,以及其实际应用

来自伯克利大学和麻省理工学院的三名研究者Richard Zhang、Phillip Isola、Alexei A. Efros日前给出了深度学习在另一个特定领域的研究进展,开发了一套可以通过深度学习自动学会帮黑白图片上色的技术。从给出的示例来看,这项技术的准确性还是比较高的。说到这些技术的应用,让许多承载着回忆的老照片焕发新生是它能做的极好的贡献之一。

值得注意的是,这个算法是在算法应用平台Algorithmia上的,雷锋网之前报道过这个平台,它的主要作用就是让算法的开发者将他们开发出来的算法托管在平台上,而APP的开发者等需要算法的人就可以很方便的通过几条简单的指令就调用上面存储着的算法,这样就能达到一个研究成果最大化利用的目的。

算法的原理

研究小组表示,他们给算法制定的目标——为随意给出的黑白照片上色,很明显条件过于宽泛,因此之前的类似算法要么需要用户很多的干涉,要么生成的照片的颜色饱和度往往相当低。而他们通过将算法设定为一个分类任务并且在训练时使用重分类方法来增加了图像颜色的多样性。他们为算法设计了一个类似于图灵测试的“颜色图灵测试”,用来评估算法的效果。让受试者区分摄制了同样物体的照片,哪张是真的哪张是程序生成颜色的结果。结果他们的方法成功骗过了20%的人,这个结果要显著高于之前的方法。

上图是这个算法的网络结构,每个卷积层(conv layer)都代表着由2到3个重复的卷积和整流线性单元(ReLU)层组成的区块,最后是一个BatchNorm层。整个网络没有池化层。分辨率的变化是由卷积块之间的空间缩减取样或不取样实现的。

研究团队在他们的论文中介绍,在图像本身的信息之外,该方法的灵感倒主要来源于它的语义学特征和其中物体的表面提供的线索,在实例中通常意味着图像标签(label)所含有的信息:如草一般都是绿的,天一般都是蓝的等。虽然这个规律并不一定是通用的,但是事实上,要让一幅图变成漂亮的彩色,并不意味着它的着色一定要跟现实中的颜色一模一样,很多时候只要颜色的相对关系看起来合理,就足够骗过人类的眼睛了。

与传统的实现方法不同,他们并不是利用着色问题的损失定制来实现算法的,之前提到过,其实颜色的预测结果有时并不需要同现实结果一模一样,比如一件衬衫,表现出很多种颜色看起来其实都是合理的。他们的方法是在算法中对每一个像素点都预测了颜色可能的分布情况。并且在训练中给不常出现的颜色更多的权重,以增加最终颜色的多样性。最终以一种分布退火的方式得到最后的颜色分布函数。得到的结果同以前的结果相比看起来会更加真实。

研究团队展示了他们的算法在1000组来自ImageNet的图像上的实验效果,其中大部分都得到了比较好的效果。

实现及结果展示

研究团队在Github上提供了他们算法的源代码(目前还是Demo版):https://github.com/richzhang/colorization

由于其算法发在了Algorithmia上,因此想要使用他们的研究结论,只需用简单的几句指令就可以调用算法实现图片的转换。

或者用这样的格式

小组展示了许多算法成功的案例。如下图

不过还需要注意的一点是,该团队自己也表示,这个算法仍处在试验阶段,它在运算有些图片的时候表现得会很好,但有的时候又会表现得很差,(不过在这一点上其他的类似算法也一样)。因为目前这个算法主要使用ImageNet的图像做训练数据,因此在处理与其训练数据类似的图像的时候会表现得比较好。但该团队也给出了一些失败的例子,不过他们在示例中同时加入了其他算法的表现,可以看出,在这些图片上,其他算法几乎也无法给出比他们算法更好的结果:

最右侧是现实情况,中间的三个是不同算法的横向比较,其中标记为“Ours”的就是该团队的算法。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-07-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【前沿】隐式自编码器(Implicit Autoencoders),自编码器新方法

【导读】本期我们将为大家介绍来自多伦多大学Alireza Makhzani博士在Google Brain的最新演讲,隐式自编码器(IAE,Implicit Au...

492
来自专栏新智元

李沐:从头开始介绍机器学习,眼花缭乱的机器学习应用

【新智元导读】亚马逊的李沐也要做深度学习课程了,名字叫《动手学深度学习》,侧重代码和实现。第一课的直播9月9日开始。昨天,他在知乎写了下面这篇文章,从头开始介绍...

3335
来自专栏北京马哥教育

Python的开源人脸识别库:离线识别率高达99.38%

github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主...

6366
来自专栏新智元

【Nature重磅】谷歌AI自动重构3D大脑,最高精度绘制神经元

【新智元导读】AI能够映射大脑神经元。人类大脑包含大约860亿个神经元,并且一个立方毫米的神经元可以产生超过1000TB的数据。由于其庞大的规模,绘制神经系统内...

552
来自专栏AI科技大本营的专栏

AI 行业实践精选:深度学习股市掘金

【AI100 导读】近年来在图像和语音识别等领域,深度学习技术所取得的突破引起了很大关注。目前在金融领域,深度学习的应用也越来越广泛。那么,深度学习可否应用到股...

2444
来自专栏钱塘大数据

Python的开源人脸识别库:离线识别率高达99.38%

以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态...

1.3K7
来自专栏编程

Python深度学习的十大入门视频教程

人工智能无疑是2017年最火爆的技术,许多外行的朋友想学习却不知道从何下手,所以特意将此文翻译过来,供大家参考。可以在短期之内进入这个领域。这些视频大多数都可以...

3206
来自专栏量子位

AI界的七大未解之谜:OpenAI丢出一组AI研究课题

林鳞 编译自 OpenAI官方博客 量子位 出品 | 公众号 QbitAI 今天,OpenAI在官方博客上丢出了7个研究过程中发现的未解决问题。 OpenAI希...

3429
来自专栏机器之心

专栏 | 李沐《动手学深度学习》第一章:机器学习简介

4285
来自专栏人工智能

2017年最后一篇推送,仍然与技术有关盘点深度学习论文年度之“最”

今年有很多的学术论文发表,以下是小编觉得能够深刻影响到自己的几篇,为大家推荐。对于每一篇文章,都阐述了论文的“目标”,简要总结了相关工作,并解释了推荐的原因。 ...

1889

扫码关注云+社区