从机器学习学python(四) ——numpy矩阵基础

从机器学习学python(四)——numpy矩阵基础

(原创内容,转载请注明来源,谢谢)

一、numpy中matrix 和 array的区别

Numpymatrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。

即用matrix计算时,加减乘除都是矩阵运算,而不是简单的运算。

二、矩阵和数组的转换

数组转矩阵:A = mat(s[]) ;矩阵转换数组:s[]= A.getA()

举例:

s=[[4,2],[3,2],[3,1]]
A =mat(s)
A
matrix([[4, 2],
[3, 2],
[3, 1]])
ss = A.getA()
ss
array([[4, 2],
[3, 2],
[3, 1]])

三、转置和轴对换

转置有三种方式,transpose方法、T属性以及swapaxes方法。

1、T属性

主要是针对二维数组,二维数组的T属性即转置。例如b=a.T表示矩阵b是矩阵a的转置。

2、transpose()

对于高维数组,转置需要确定转置方式。首先,矩阵的每个维度有个编号,从0开始编号,例如三维矩阵,则三个维度的编号分别是0、1、2。

a.transpose(0,1,2)即为a,表示a没有转置。a.transpose()则等价于a.transpose(2,1,1),表示完全的转置。而例如a.transpose(0,2,1)表示第三维和第二维进行的转换。

3、swapaxes()

这个方法和transpose方法类似,区别在于这个方法只接收两个参数,表示指定的两个维度的转换。例如a.swapaxes(1,2)等价于a.transpose(0,2,1)。注意到这里维度也是从0开始当作第一维的。

——written by linhxx 2018.01.17

原文发布于微信公众号 - 决胜机器学习(phpthinker)

原文发表时间:2018-01-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏marsggbo

【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢?

361
来自专栏GAN&CV

迁移学习之--tensorflow选择性加载权重

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/d...

724
来自专栏数据结构与算法

Stirling数

第一类: 定义 第一类Stirling数表示表示将 n 个不同元素构成m个圆排列的数目。又根据正负性分为无符号第一类Stirling数 ? 和带符号第一类...

31210
来自专栏Hadoop数据仓库

HAWQ + MADlib 玩转数据挖掘之(十一)——分类方法之决策树

一、分类方法简介 1. 分类的概念         数据挖掘中分类的目的是学会一个分类函数或分类模型(也常常被称作分类器),该模型能把数据库中的数据项映射到给定...

25910
来自专栏生信小驿站

python 特征选择①

VarianceThreshold 是特征选择中的一项基本方法。它会移除所有方差不满足阈值的特征。默认设置下,它将移除所有方差为0的特征,即那些在所有样本中数值...

482
来自专栏用户2442861的专栏

Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写

http://www.cnblogs.com/denny402/p/5073427.html

361
来自专栏AILearning

TF图层指南:构建卷积神经网络

TensorFlow layers模块提供了一个高级API,可以轻松构建神经网络。它提供了便于创建密集(完全连接)层和卷积层,添加激活函数以及应用缺陷正则化的方...

2865
来自专栏张俊红

python数据科学-数据预处理

总第88篇 数据预处理是我们在做机器学习之前必经的一个过程,在机器学习中常见的数据预处理包括缺失值处理,缩放数据以及对数据进行标准化处理这三个过程。 01|缺失...

3296
来自专栏李智的专栏

Deep learning基于theano的keras学习笔记(1)-Sequential模型

《统计学习方法》中指出,机器学习的三个要素是模型,策略和优算法,这当然也适用于深度学习,而我个人觉得keras训练也是基于这三个要素的,先建立深度模型,然后选用...

781
来自专栏ATYUN订阅号

Python机器学习的练习四:多元逻辑回归

在本系列的第3部分中,我们实现了简单的和正则化的逻辑回归。但我们的解决方法有一个限制—它只适用于二进制分类。在本文中,我们将在之前的练习中扩展我们的解决方案,以...

3645

扫描关注云+社区