# 请注意，我们要谈谈神经网络的注意机制和使用方法

（用 Matlab 的表示方法），它会改变自己的维度，所以现在[图片上传中。。。（3）]，其中 m≤k。

g = I[y:y+h, x:x+w]

https://goo.gl/nfPB6r

def gaussian_mask(u, s, d, R, C): """ :param u: tf.Tensor, centre of the first Gaussian. :param s: tf.Tensor, standard deviation of Gaussians. :param d: tf.Tensor, shift between Gaussian centres. :param R: int, number of rows in the mask, there is one Gaussian per row. :param C: int, number of columns in the mask. """ # indices to create centres R = tf.to_float(tf.reshape(tf.range(R), (1, 1, R))) C = tf.to_float(tf.reshape(tf.range(C), (1, C, 1))) centres = u[np.newaxis, :, np.newaxis] + R * d column_centres = C - centres mask = tf.exp(-.5 * tf.square(column_centres / s)) # we add eps for numerical stability normalised_mask = mask / (tf.reduce_sum(mask, 1, keep_dims=True) + 1e-8) return normalised_mask

def gaussian_glimpse(img_tensor, transform_params, crop_size):
"""
:param img_tensor: tf.Tensor of size (batch_size, Height, Width, channels)    :param transform_params: tf.Tensor of size (batch_size, 6), where params are  (mean_y, std_y, d_y, mean_x, std_x, d_x) specified in pixels.
:param crop_size): tuple of 2 ints, size of the resulting crop
"""
# parse arguments
h, w = crop_size
H, W = img_tensor.shape.as_list()[1:3]
split_ax = transform_params.shape.ndims -1
uy, sy, dy, ux, sx, dx = tf.split(transform_params, 6, split_ax)
# create Gaussian masks, one for each axis
Ay = gaussian_mask(uy, sy, dy, h, H)
Ax = gaussian_mask(ux, sx, dx, w, W)
# extract glimpse
glimpse = tf.matmul(tf.matmul(Ay, img_tensor, adjoint_a=True), Ax)
return glimpse

def spatial_transformer(img_tensor, transform_params, crop_size):
"""
:param img_tensor: tf.Tensor of size (batch_size, Height, Width, channels)    :param transform_params: tf.Tensor of size (batch_size, 4), where params are  (scale_y, shift_y, scale_x, shift_x)
:param crop_size): tuple of 2 ints, size of the resulting crop
"""
constraints = snt.AffineWarpConstraints.no_shear_2d()
img_size = img_tensor.shape.as_list()[1:]
warper = snt.AffineGridWarper(img_size, crop_size, constraints)
grid_coords = warper(transform_params)
glimpse = snt.resampler(img_tensor[..., tf.newaxis], grid_coords)
return glimpse

import tensorflow as t
fimport sonnet as sn
timport numpy as np
import matplotlib.pyplot as plt
img_size = 10, 10
glimpse_size = 5, 5
# Create a random image with a square
x = abs(np.random.randn(1, *img_size)) * .3
x[0, 3:6, 3:6] = 1
crop = x[0, 2:7, 2:7] # contains the square

tf.reset_default_graph()
# placeholderstx = tf.placeholder(tf.float32, x.shape, 'image')
tu = tf.placeholder(tf.float32, [1], 'u')
ts = tf.placeholder(tf.float32, [1], 's')
td = tf.placeholder(tf.float32, [1], 'd')
stn_params = tf.placeholder(tf.float32, [1, 4], 'stn_params')

# Gaussian Attentiongaussian_att_params = tf.concat([tu, ts, td, tu, ts, td], -1) gaussian_glimpse_expr = gaussian_glimpse(tx, gaussian_att_params, glimpse_size)
# Spatial Transformer
stn_glimpse_expr = spatial_transformer(tx, stn_params, glimpse_size)

sess = tf.Session()# extract a Gaussian glimpse
u = 2
s = .5
d = 1
u, s, d = (np.asarray([i]) for i in (u, s, d))
gaussian_crop = sess.run(gaussian_glimpse_expr, feed_dict={tx: x, tu: u, ts: s, td: d})
# extract STN glimpse
transform = [.4, -.1, .4, -.1]
transform = np.asarray(transform).reshape((1, 4))
stn_crop = sess.run(stn_glimpse_expr, {tx: x, stn_params: transform})
# plots
fig, axes = plt.subplots(1, 4, figsize=(12, 3))
titles = ['Input Image', 'Crop', 'Gaussian Att', 'STN']
imgs = [x, crop, gaussian_crop, stn_crop]
for ax, title, img in zip(axes, titles, imgs):
ax.imshow(img.squeeze(), cmap='gray', vmin=0., vmax=1.)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)

https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650732434&idx=2&sn=c668f9e835a4dc48730048478ba24526&chksm=871b33ecb06cbafae7e8126b8726b273111231d841c1f980c5cc5594dc9a94aff4b676ef4fbd#rd

423 篇文章78 人订阅

0 条评论

## 相关文章

1002

7919

2914

28310

854

3328

3509

3276

3875

### （数据科学学习手札11）K-means聚类法的原理简介&Python与R实现

kmeans法（K均值法）是麦奎因提出的，这种算法的基本思想是将每一个样本分配给最靠近中心（均值）的类中，具体的算法至少包括以下三个步骤： 　　1.将所有的样品...

4537