TensorFlow从0到1 | 第十四章:交叉熵损失函数——防止学习缓慢

通过上一篇 13 驯兽师:神经网络调教综述,对神经网络的调教有了一个整体印象,本篇从学习缓慢这一常见问题入手,根据Michael Nielsen的《Neural Networks and Deep Learning》中的建议,引入交叉熵损失函数,并分析它是如何克服学习缓慢问题。

学习缓慢

“严重错误”导致学习缓慢

回顾识别MNIST的网络架构,我们采用了经典的S型神经元,以及常见的基于均方误差(MSE)的二次函数作为损失函数。殊不知这种组合,在实际输出与预期偏离较大时,会造成学习缓慢。

简单的说,如果在初始化权重和偏置时,故意产生一个背离预期较大的输出,那么训练网络的过程中需要用很多次迭代,才能抵消掉这种背离,恢复正常的学习。这种现象与人类学习的经验相悖:对于明显的错误,人类能进行快速的修正

为了看清楚这个现象,Michael用一个S型神经元,从微观的角度做了重现。这个神经元接受1个固定的输入“1”,期望经过训练后能输出“0”,因此待训练参数为1个权重w和1个偏置b,如下图:

单一神经元

先观察一个“正常”初始化的情况。

令w=0.6,b=0.9,可认为其符合均值为0,标准差为1的正态分布。此时,输入1,输出0.82。接下来开始使用梯度下降法进行迭代训练,从Epoch-Cost曲线可以看到“损失”快速降低,到第100次时就很低了,到第300次迭代时已经几乎为0,符合预期,如下图:

正常的学习

接下来换一种初始化策略。

将w和b都赋值为“2.0”。此时,输入1,输出为0.98——比之前的0.82偏离预期值0更远了。接下来的训练Epoch-Cost曲线显示200次迭代后“损失”依然很高,减少缓慢,而最后100次迭代才开始恢复正常的学习,如下图:

学习缓慢

学习缓慢原因分析

单个样本情况下,基于均方误差的二次损失函数为:

B-N-F-8

一个神经元的情况下就不用反向传播求导了,已知a = σ(z),z = wx + b,直接使用链式求导即可:

B-N-F-11

将唯一的一个训练样本(x=1,y=0)代入,得到:

B-N-F-11-2

观察σ(z)函数曲线会发现,当σ接近于1时,σ曲线特别的平坦,所以此处σ'(z)是一个非常小的值,由上式可推断C的梯度也会非常小,“下降”自然也就会变得缓慢。这种情况也成为神经元饱和。这就解释了前面初始的神经元输出a=0.98,为什么会比a=0.82学习缓慢那么多。

Sigmoid

交叉熵损失函数

S型神经元,与二次均方误差损失函数的组合,一旦神经元输出发生“严重错误”,网络将陷入一种艰难而缓慢的学习“沼泽”中。

对此一个简单的策略就是更换损失函数,使用交叉熵损失函数可以明显的改善当发生“严重错误”时导致的学习缓慢,使神经网络的学习更符合人类经验——快速从错误中修正。

交叉熵损失函数定义如下:

交叉熵损失函数

在证明它真的能避免学习缓慢之前,有必要先确认它是否至少可以衡量“损失”,后者并不显而易见。

一个函数能够作为损失函数,要符合以下两个特性:

  • 非负;
  • 当实际输出接近预期,那么损失函数应该接近0。

交叉熵全部符合。首先,实际输出a的取值范围为(0, 1),所以无论是lna还是ln(1-a)都是负数,期望值y的取值非0即1,因此中括号里面每项都是负数,再加上表达式最前面的一个负号,所以整体为非负。再者,当预期y为0时,如果实际输出a接近0时,C也接近0;当预期y为1时,如果实际输出a接近1,那么C也接近0。

接下来分析为什么交叉熵可以避免学习缓慢,仍然从求C的偏导开始。

单样本情况下,交叉熵损失函数可以记为:

交叉熵损失函数

对C求w的偏导数:

B-N-F-12-2

a = σ(z),将其代入:

B-N-F-12-3

对于Sigmoid函数,有σ'(z) = σ(z)(1-σ(z)),所以上式中的σ'(z)被抵消了,得到:

B-N-F-12-4

由此可见,C的梯度不再与σ'(z)有关,而与a-y相关,其结果就是:实际输出与预期偏离越大,梯度越大,学习越快

对于偏置,同理有:

B-N-F-12-5

更换损失函数为交叉熵后,回到之前学习缓慢的例子,重新训练,Epoch-Cost曲线显示学习缓慢的情况消失了。

学习缓慢消失

推广到多神经元网络

前面的有效性证明是基于一个神经元所做的微观分析,将其推广到多层神经元网络也是很容易的。从分量的角度来看,假设输出神经元的预期值是y = y1,y2,...,实际输出aL = aL1,aL2,...,那么交叉熵损失函数计算公式如下:

交叉熵损失函数

评价交叉熵损失,注意以下3点:

  • 交叉熵无法改善隐藏层中神经元发生的学习缓慢。损失函数定义中的aL是最后一层神经元的实际输出,所以“损失”C针对输出层神经元的权重wLj求偏导数,可以产生抵消σ'(zLj)的效果,从而避免输出层神经元的学习缓慢问题。但是“损失”C对于隐藏层神经元的权重wL-1j求偏导,就无法产生抵消σ'(zL-1j)的效果。
  • 交叉熵损失函数只对网络输出“明显背离预期”时发生的学习缓慢有改善效果,如果初始输出背离预期并不明显,那么应用交叉熵损失函数也无法观察到明显的改善。从另一个角度看,应用交叉熵损失是一种防御性策略,增加训练的稳定性。
  • 应用交叉熵损失并不能改善或避免神经元饱和,而是当输出层神经元发生饱和时,能够避免其学习缓慢的问题。

小结

现有神经网络中存在一种风险:由于初始化或其他巧合因素,一旦出现输出与预期偏离过大,就会导致网络学习缓慢。本篇分析了该现象出现的原因,引入交叉熵损失函数,并推理证明了其有效性。

附完整代码

代码基于 12 TF构建3层NN玩转MNIST中 的tf_12_mnist_nn.py,修改了损失函数,TensorFlow提供了交叉熵的封装:

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-08-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与Python学习

干货 | 机器学习算法大总结(ML岗面试常考)

键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 找工作时(IT行业),除了常见的软件...

3306
来自专栏大数据文摘

利用 Scikit Learn的Python数据预处理实战指南

1615
来自专栏华章科技

机器学习萌新必学的Top10算法

导读:在机器学习领域里,不存在一种万能的算法可以完美解决所有问题,尤其是像预测建模的监督学习里。

452
来自专栏AI研习社

循环神经网络的介绍、代码及实现

该文主要目的是让大家体会循环神经网络在与前馈神经网络的不同之处。 大家貌似都叫Recurrent Neural Networks为循环神经网络。 我之前是查维基...

3398
来自专栏机器学习算法与Python学习

精华 | 机器学习岗面试,这些是基础!(ML,DL,SL相关知识整理)

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 明天推出第3期送书活动 数量10本 ...

3547
来自专栏决胜机器学习

循环神经网络(三) ——词嵌入学习与余弦相似度

循环神经网络(三) ——词嵌入学习与余弦相似度 (原创内容,转载请注明来源,谢谢) 一、词汇表征 1、one-hot表示法 之前的学习中提到过,对于词汇库,可以...

3426
来自专栏大数据文摘

R: 学习Gradient Boosting算法,提高预测模型准确率

21611
来自专栏人工智能

最新机器学习必备十大入门算法!都在这里了

原文来源:KDnuggets 作者:Reena Shaw 「雷克世界」编译:BaymaxZ ? 我们向初学者介绍十大机器学习(ML)算法,并附上数字和示例,方便...

1867
来自专栏灯塔大数据

原创译文|从神经网络说起:深度学习初学者不可不知的25个术语和概念(下)

人工智能,深度学习和机器学习,不论你现在是否能够理解这些概念,你都应该学习。否则三年内,你就会像灭绝的恐龙一样被社会淘汰。 ——马克·库班(NBA小牛队老板,...

4217
来自专栏大数据挖掘DT机器学习

机器学习算法总结(面试用到)

找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据...

3485

扫描关注云+社区