基于深度卷积神经网络进行人脸识别的原理是什么?

我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。

它的结构如下图所示:

1 Input Image -> Detect

输入:原始的可能含有人脸的图像。

输出:人脸位置的bounding box。

这一步一般我们称之为“人脸检测”(Face Detection),在OpenFace中,使用的是dlib、OpenCV现有的人脸检测方法。此方法与深度学习无关,使用的特征是传统计算机视觉中的方法(一般是Hog、Haar等特征)。

2 Detect -> Transform -> Crop

输入:原始图像 + 人脸位置bounding box

输出:“校准”过的只含有人脸的图像

对于输入的原始图像 + bounding box,这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。所谓关键点,就是下图所示的绿色的点,通常是眼角的位置、鼻子的位置、脸的轮廓点等等。有了这些关键点后,我们就可以把人脸“校准”,或者说是“对齐”。解释就是原先人脸可能比较歪,这里根据关键点,使用仿射变换将人脸统一“摆正”,尽量去消除姿势不同带来的误差。这一步我们一般叫Face Alignment。

在OpenFace中,这一步同样使用的是传统方法,特点是比较快,对应的论文是:https://pdfs.semanticscholar.org/d78b/6a5b0dcaa81b1faea5fb0000045a62513567.pdf

3

Crop -> Representation

输入:校准后的单张人脸图像

输出:一个向量表示。

这一步就是使用深度卷积网络,将输入的人脸图像,转换成一个向量的表示。在OpenFace中使用的向量是128x1的,也就是一个128维的向量。

我们可以先看一下VGG16的模型:

VGG16是深度学习中一个比较简单的基本模型。输入神经网络的是图像,经过一系列卷积后,全连接分类得到类别概率。

在通常的图像应用中,我们可以去掉全连接层,用计算的特征(一般就是卷积层的最后一层,e.g. 图中的conv5_3)来当作提取的特征进行计算。但如果对人脸识别问题同样采用这样的方法,即,使用卷积层最后一层做为人脸的“向量表示”,效果其实是不好的。如何改进?我们之后再谈,这里先谈谈我们希望这种人脸的“向量表示”应该具有哪些性质。

在理想的状况下,我们希望“向量表示”之间的距离就可以直接反映人脸的相似度:

  • 对于同一个人的人脸图像,对应的向量的欧几里得距离应该比较小。
  • 对于不同人的人脸图像,对应的向量之间的欧几里得距离应该比较大。

这种表示实际上就可以看做某种“embedding”。在原始的VGG16模型中,我们使用的是softmax损失,没有对每一类的向量表示之间的距离做出要求。所以不能直接用作人脸表示。

举个例子,使用CNN对MNIST进行分类,我们设计一个特殊的卷积网络,让最后一层的向量变为2维,此时可以画出每一类对应的2维向量表示的图(图中一种颜色对应一种类别):

上图是我们直接使用softmax训练得到的结果,它就不符合我们希望特征具有的特点:

  • 我们希望同一类对应的向量表示尽可能接近。但这里同一类(如紫色),可能具有很大的类间距离。
  • 我们希望不同类对应的向量应该尽可能远。但在图中靠中心的位置,各个类别的距离都很近。

那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。centor loss实际上是在softmax的loss上再加入一个损失,这个损失对每一类规定了一个“中心”点,每一类的特征应该离这个中心点比较近,而不同类的中心点离的比较远。加入center loss后,训练出的特征大致长这样:

这样的特征表示就比较符合我们的要求了。center loss的原始论文在这里:http://ydwen.github.io/papers/WenECCV16.pdf 上面这两幅图同样是从这篇论文中截下来的。

顺带一提,除了center loss外。学习人脸特征表示的方法还有很多,如triplet loss(论文地址:https://github.com/seetaface/SeetaFaceEngine 。triplet loss直接这样的用三元组(A的图像1,A的图像2,B的图像)来训练网络。去掉了最后的分类层,强迫神经网络对相同的人脸图像(三元组中的同一人A)建立统一的表达。

4

实际应用

输入:人脸的向量表示。

有了人脸的向量表示后,剩下的问题就非常简单了。因为这种表示具有相同人对应的向量的距离小,不同人对应的向量距离大的特点。接下来一般的应用有以下几类:

  • 人脸验证(Face Identification)。就是检测A、B是否是属于同一个人。只需要计算向量之间的距离,设定合适的报警阈值(threshold)即可。
  • 人脸识别(Face Recognition)。这个应用是最多的,给定一张图片,检测数据库中与之最相似的人脸。显然可以被转换为一个求距离的最近邻问题。
  • 人脸聚类(Face Clustering)。在数据库中对人脸进行聚类,直接K-Means即可。

5

后记

以上给大家介绍了OpenFace中处理人脸问题的pipeline。需要特别指出的是,人脸相关的问题是一个比较大的方向,一篇文章显然是说不清楚的,这里只是基于OpenFace,对比较重要的方法还有名词做了一个解释。在OpenFace中,为了速度的考虑,提取人脸特征之前的Face Detection和Face Alignment就是使用的传统方法。实际上也可以换用精度更高的深度学习相关方法,比如在中科院山世光老师开源的人脸识别引擎seetaface/SeetaFaceEngine中,Face Alignment使用就是一个基于autoencoder网络的方法。另外,学习人脸特征同样有适合不同场景的不同方法,这些都是要进一步学习的。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-08-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

学界 | ICCV 2017 spotlight论文解读:如何提高行人再识别的准确率

AI科技评论按:本文作者孙奕帆,首发于知乎专栏「行人重识别」,AI科技评论获其授权转载。 文章链接:https://arxiv.org/abs/1703.056...

40812
来自专栏开心的学习之路

神经网络体系搭建(二)——深度学习网络

本篇是神经网络体系搭建的第二篇,解决体系搭建的深度学习网络相关问题,详见神经网络体系搭建(序) 深度学习是一个已经被说烂了的词,几乎说起人工智能,非专业人士也会...

34510
来自专栏机器之心

入门 | 半监督学习在图像分类上的基本工作方式

32410
来自专栏数据派THU

卷积神经网络失陷,CoordConv来填坑(附代码&视频)

本文讲述了卷积神经网络在涉及坐标建模等方面的缺陷,但是提出了CoordConv 作为解决方案。

562
来自专栏数据科学与人工智能

【深度学习】深度学习

深度学习的起源 深度学习(Deep Learning)是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。深度学...

2807
来自专栏人工智能

UMCP提出对损失函数进行可视化,以提高神经网络的训练能力

原文来源:arxiv 作者:Hao Li、Zheng Xu、Gavin Taylor、Tom Goldstein 「雷克世界」编译:嗯~阿童木呀、KABUDA ...

1849
来自专栏AI科技评论

深度学习元老Yann Lecun详解卷积神经网络(30页干货PPT)

雷锋网注:卷积神经网络(Convolutional Neural Network)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型...

3339
来自专栏IT技术精选文摘

深入浅出谈人脸识别技术

在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍...

3266
来自专栏专知

专知主题链路知识推荐#4-机器学习中往往被忽视的贝叶斯参数估计方法

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视...

3224
来自专栏专知

【深度学习最精炼中文讲义】前馈与卷积神经网络详解,复旦邱锡鹏老师《神经网络与深度学习》报告分享02(附报告pdf下载)

【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰...

6026

扫描关注云+社区