基于深度卷积神经网络进行人脸识别的原理是什么?

我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。

它的结构如下图所示:

1 Input Image -> Detect

输入:原始的可能含有人脸的图像。

输出:人脸位置的bounding box。

这一步一般我们称之为“人脸检测”(Face Detection),在OpenFace中,使用的是dlib、OpenCV现有的人脸检测方法。此方法与深度学习无关,使用的特征是传统计算机视觉中的方法(一般是Hog、Haar等特征)。

2 Detect -> Transform -> Crop

输入:原始图像 + 人脸位置bounding box

输出:“校准”过的只含有人脸的图像

对于输入的原始图像 + bounding box,这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。所谓关键点,就是下图所示的绿色的点,通常是眼角的位置、鼻子的位置、脸的轮廓点等等。有了这些关键点后,我们就可以把人脸“校准”,或者说是“对齐”。解释就是原先人脸可能比较歪,这里根据关键点,使用仿射变换将人脸统一“摆正”,尽量去消除姿势不同带来的误差。这一步我们一般叫Face Alignment。

在OpenFace中,这一步同样使用的是传统方法,特点是比较快,对应的论文是:https://pdfs.semanticscholar.org/d78b/6a5b0dcaa81b1faea5fb0000045a62513567.pdf

3

Crop -> Representation

输入:校准后的单张人脸图像

输出:一个向量表示。

这一步就是使用深度卷积网络,将输入的人脸图像,转换成一个向量的表示。在OpenFace中使用的向量是128x1的,也就是一个128维的向量。

我们可以先看一下VGG16的模型:

VGG16是深度学习中一个比较简单的基本模型。输入神经网络的是图像,经过一系列卷积后,全连接分类得到类别概率。

在通常的图像应用中,我们可以去掉全连接层,用计算的特征(一般就是卷积层的最后一层,e.g. 图中的conv5_3)来当作提取的特征进行计算。但如果对人脸识别问题同样采用这样的方法,即,使用卷积层最后一层做为人脸的“向量表示”,效果其实是不好的。如何改进?我们之后再谈,这里先谈谈我们希望这种人脸的“向量表示”应该具有哪些性质。

在理想的状况下,我们希望“向量表示”之间的距离就可以直接反映人脸的相似度:

  • 对于同一个人的人脸图像,对应的向量的欧几里得距离应该比较小。
  • 对于不同人的人脸图像,对应的向量之间的欧几里得距离应该比较大。

这种表示实际上就可以看做某种“embedding”。在原始的VGG16模型中,我们使用的是softmax损失,没有对每一类的向量表示之间的距离做出要求。所以不能直接用作人脸表示。

举个例子,使用CNN对MNIST进行分类,我们设计一个特殊的卷积网络,让最后一层的向量变为2维,此时可以画出每一类对应的2维向量表示的图(图中一种颜色对应一种类别):

上图是我们直接使用softmax训练得到的结果,它就不符合我们希望特征具有的特点:

  • 我们希望同一类对应的向量表示尽可能接近。但这里同一类(如紫色),可能具有很大的类间距离。
  • 我们希望不同类对应的向量应该尽可能远。但在图中靠中心的位置,各个类别的距离都很近。

那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。centor loss实际上是在softmax的loss上再加入一个损失,这个损失对每一类规定了一个“中心”点,每一类的特征应该离这个中心点比较近,而不同类的中心点离的比较远。加入center loss后,训练出的特征大致长这样:

这样的特征表示就比较符合我们的要求了。center loss的原始论文在这里:http://ydwen.github.io/papers/WenECCV16.pdf 上面这两幅图同样是从这篇论文中截下来的。

顺带一提,除了center loss外。学习人脸特征表示的方法还有很多,如triplet loss(论文地址:https://github.com/seetaface/SeetaFaceEngine 。triplet loss直接这样的用三元组(A的图像1,A的图像2,B的图像)来训练网络。去掉了最后的分类层,强迫神经网络对相同的人脸图像(三元组中的同一人A)建立统一的表达。

4

实际应用

输入:人脸的向量表示。

有了人脸的向量表示后,剩下的问题就非常简单了。因为这种表示具有相同人对应的向量的距离小,不同人对应的向量距离大的特点。接下来一般的应用有以下几类:

  • 人脸验证(Face Identification)。就是检测A、B是否是属于同一个人。只需要计算向量之间的距离,设定合适的报警阈值(threshold)即可。
  • 人脸识别(Face Recognition)。这个应用是最多的,给定一张图片,检测数据库中与之最相似的人脸。显然可以被转换为一个求距离的最近邻问题。
  • 人脸聚类(Face Clustering)。在数据库中对人脸进行聚类,直接K-Means即可。

5

后记

以上给大家介绍了OpenFace中处理人脸问题的pipeline。需要特别指出的是,人脸相关的问题是一个比较大的方向,一篇文章显然是说不清楚的,这里只是基于OpenFace,对比较重要的方法还有名词做了一个解释。在OpenFace中,为了速度的考虑,提取人脸特征之前的Face Detection和Face Alignment就是使用的传统方法。实际上也可以换用精度更高的深度学习相关方法,比如在中科院山世光老师开源的人脸识别引擎seetaface/SeetaFaceEngine中,Face Alignment使用就是一个基于autoencoder网络的方法。另外,学习人脸特征同样有适合不同场景的不同方法,这些都是要进一步学习的。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-08-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

论文Express | 美图云+中科院AAAI2018:视频语义理解的类脑智能

902
来自专栏目标检测和深度学习

ICLR 2018最佳论文重磅出炉!Adam新算法、球形CNN等受关注

新智元报道 作者:小潘 【新智元导读】今天,ICLR官网公布了ICLR 2018的最佳论文,一共三篇。这些论文在被ICLR接收之后持续得到讨论,包括提出...

3518
来自专栏AI科技评论

ECAI 2016论文精选 | 更快,更精确的人脸识别方法

导读:ECAI 2016是欧洲展示AI科学成果的最佳场所,大会为研究人员提供了很好的机会,去介绍和听取当代最优秀的人工智能研究成果。 人脸识别的随机典型相关判别...

2758
来自专栏Brian

深度学习笔记-神经网络介绍

---- Deep Learning 学习笔记-第一周 Andrew Ng发布了新课程,业界评价很好。在看的过程中非常不错,我把一些重要的知识和要点进行了总结和...

3084
来自专栏机器之心

前沿 | 谷歌AI脑神经元绘制法登上Nature子刊:速度提升一个数量级

连接组学旨在综合描绘在神经系统中发现的神经网络结构,以更好地理解大脑的运作模式。这一过程需要对大脑组织进行纳米级的 3D 成像(通常使用电子显微镜),然后分析成...

702
来自专栏SIGAI学习与实践平台

大话AdaBoost算法

AI 39年(公元1995年),扁鹊成立了一家专治某疑难杂症的医院,经过半年的精心筹备,硬件设施已全部到位,只缺经验丰富的医生前来坐诊。找几个猎头打听了一下,乖...

702
来自专栏IT派

干货!一文读懂行人检测算法

行人检测可定义为判断输入图片或视频帧是否包含行人,如果有将其检测出来,并输出bounding box 级别的结果。由于行人兼具刚性和柔性物体的特性 ,外观易受穿...

1175
来自专栏人工智能头条

【王晓刚】深度学习在图像识别中的研究进展与展望

1767
来自专栏AI科技评论

MIT教你创造让人“雌雄难辨”的图灵机器,秘密全在这篇论文里

GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,谷歌,DeepMind,Uber,微软等巨头的人...

2786
来自专栏机器之心

CVPR 2018 | 腾讯AI Lab提出新型损失函数LMCL:可显著增强人脸识别模型的判别能力

选自arXiv 机器之心编译 参与:Panda 深度卷积神经网络 (CNN) 已经推动人脸识别实现了革命性的进展。人脸识别的核心任务包括人脸验证和人脸辨识。然而...

35210

扫码关注云+社区