机器学习实战 | 第三章:集成学习

集成学习肯定是在实战中最不可或缺的思想了.毕竟都想把错误率低一点,再低一点,再低一点.看看kaggle大量的集成学习就知道这节肯定绕不过去了.

在这里,仅仅说一下最基本的bagging的类,至于更加具体的随机森林或者boosting方法会具体的开一篇来写。bagging有两个类,一个是BaggingClassifier,还有一个是BaggingRegressor,两种形式都是类似的,所以之详细说BaggingClassifier,另外一个类比就行。

class sklearn.ensemble.BaggingClassifier(base_estimator=None,n_estimators=10, max_samples=1.0,max_features=1.0,bootstrap=True,bootstrap_features=False,

oob_score=False,warm_start=False, n_jobs=1, random_state=None, verbose=0)

参数: base_estimator : 一个对象或者None,默认是None,这里是传入一个基本的学习器对象,比如Ridge对象啊,等等。要是None的话,学习器就是决策树。 n_estimators : int类型,表示基本学习器的数量。默认是10 max_samples : int类型或者float类型, 默认为1.0. 这个参数表示从数据集X中抽出多少的数据用来训练基本的学习器。当为整数的时候,就抽出整数个样本,当为浮点数的时候,就抽出该比例的样本。 max_features : int or float, optional (default=1.0) The number of features to draw from X to train each base estimator. If int, then draw max_features features. If float, then draw max_features * X.shape[1] features. bootstrap : boolean, optional (default=True) Whether samples are drawn with replacement. bootstrap_features : boolean, optional (default=False) Whether features are drawn with replacement. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. warm_start : bool, optional (default=False) When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. New in version 0.17: warm_start constructor parameter. n_jobs : int, optional (default=1) The number of jobs to run in parallel for both fit and predict. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. verbose : int, optional (default=0) Controls the verbosity of the building process.

属性

base_estimator_ : estimator The base estimator from which the ensemble is grown. estimators_ : list of estimators The collection of fitted base estimators. estimators_samples_ : list of arrays The subset of drawn samples (i.e., the in-bag samples) for each base estimator. Each subset is defined by a boolean mask. estimators_features_ : list of arrays The subset of drawn features for each base estimator. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int or list The number of classes. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, oob_decision_function_ might contain NaN.

Methods decision_function(*args, **kwargs) Average of the decision functions of the base classifiers. fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the training set (X, y). get_params([deep]) Get parameters for this estimator. predict(X) Predict class for X. predict_log_proba(X) Predict class log-probabilities for X. predict_proba(X) Predict class probabilities for X. score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels. set_params(**params) Set the parameters of this estimator. init(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=1, random_state=None, verbose=0)[source] decision_function(*args, **kwargs)[source] Average of the decision functions of the base classifiers. Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrices are accepted only if they are supported by the base estimator.

Returns: score : array, shape = [n_samples, k] The decision function of the input samples. The columns correspond to the classes in sorted order, as they appear in the attribute classes_. Regression and binary classification are special cases with k == 1, otherwise k==n_classes. estimators_samples_ The subset of drawn samples for each base estimator. Returns a dynamically generated list of boolean masks identifying the samples used for for fitting each member of the ensemble, i.e., the in-bag samples. Note: the list is re-created at each call to the property in order to reduce the object memory footprint by not storing the sampling data. Thus fetching the property may be slower than expected. fit(X, y, sample_weight=None)[source] Build a Bagging ensemble of estimators from the training set (X, y).

Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. y : array-like, shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Note that this is supported only if the base estimator supports sample weighting.

Returns: self : object Returns self. get_params(deep=True)[source] Get parameters for this estimator. Parameters: deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns: params : mapping of string to any Parameter names mapped to their values. predict(X)[source] Predict class for X. The predicted class of an input sample is computed as the class with the highest mean predicted probability. If base estimators do not implement a predict_proba method, then it resorts to voting.

Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrices are accepted only if they are supported by the base estimator.

Returns: y : array of shape = [n_samples] The predicted classes. predict_log_proba(X)[source] Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the base estimators in the ensemble.

Parameters:

X : {array-like, sparse matrix} of shape = [n_samples, n_features]

The training input samples. Sparse matrices are accepted only if they are supported by the base estimator.

Returns: p : array of shape = [n_samples, n_classes] The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_. predict_proba(X)[source] Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the mean predicted class probabilities of the base estimators in the ensemble. If base estimators do not implement a predict_proba method, then it resorts to voting and the predicted class probabilities of an input sample represents the proportion of estimators predicting each class.

Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrices are accepted only if they are supported by the base estimator.

Returns: p : array of shape = [n_samples, n_classes] The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_. score(X, y, sample_weight=None)[source] Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters: X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights.

Returns: score : float Mean accuracy of self.predict(X) wrt. y. set_params(**params)[source] Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-09-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏开发与安全

算法:图解最小生成树之克鲁斯卡尔(Kruskal)算法

我们在前面讲过的《克里姆算法》是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的。同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直...

2958
来自专栏程序员互动联盟

【编程之美】最短路径

最短路径 任意给定两个数字A和B,通过将A和6个数(7,-7,5,-5,12,-12)做加减运算,运算次数不限,每个数可以被使用多次,求从A到B最少要经过多少次...

3756
来自专栏WD学习记录

牛客网 和为S的连续正数序列

小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100...

1171
来自专栏数据结构与算法

UOJ#179. 线性规划(线性规划)

有 nn 个实数变量 x1,x2,…,xnx1,x2,…,xn 和 mm 条约束,其中第 ii 条约束形如 ∑nj=1aijxj≤bi∑j=1naijxj≤bi...

733
来自专栏大闲人柴毛毛

JavaFX文档翻译——TriangleMesh篇

Defines a 3D triangle mesh that consists of its associated VertexFormat and a ...

4188
来自专栏数据结构与算法

洛谷P4093 [HEOI2016/TJOI2016]序列

题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化。现...

3117
来自专栏calmound

poj 2886 Who Gets the Most Candies?

题意:n个人围城一圈,每个人决定下一个出局的人在他的第几个位置,首先出局的人是第k个人 分析:反素数+约瑟夫 这道题最主要需要理解的就是线段树是如何模拟的反素...

3288
来自专栏数据结构与算法

51nod1004 n^n的末位数字

题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5  难度:1级算法题 给出一...

3506
来自专栏数据结构与算法

BZOJ4766: 文艺计算姬

Description "奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺 术细胞。普通计算机能计算一个带...

2948
来自专栏desperate633

LeetCode 11. Container With Most Water题目分析代码

给定 n 个非负整数 a1, a2, ..., an, 每个数代表了坐标中的一个点 (i, ai)。画 n 条垂直线,使得 i 垂直线的两个端点分别为(i, a...

845

扫码关注云+社区