业界丨人工智能哪些领域及公司值得关注?Playfair投资人为你阐述六大关注方向

AI科技评论按:有人将人工智能定义为“认知计算”或者是“机器智能”,有的人将 AI 与“机器学习”混为一谈。事实上,这些都是不准确的,因为人工智能不单单是指某一种技术。这是一个由多学科构成的广阔领域。众所周知, AI 的最终目标是创建能够执行任务并且具备认知功能的智慧体,否则它只是在人类智力范围内的机器。为了完成这个野望,机器必须学会自主学习,而不是由人类来对每一个系统进行编程。

令人兴奋的是,在过去 10 年中,人工智能领域已经取得了大的进步,从自动驾驶汽车到语音识别到机器翻译,AI 正在变得越来越好,也离我们越来越近。近日,知名风投 Playfair Capital 风险投资人 Nathan Benaich 在 medium 上发布文章《6 areas of AI and machine learning to watch closely》,讲述了他眼中人工智能发展势头比较火热的领域及其应用。AI科技评论编译。

1. 强化学习(RL)

强化学习是一种试错(trial-and-error)的学习范式。在一个典型的 RL 中,强化学习需要连续选择一些行为,而这些行为完成后会得到最大的收益。强化学习在没有任何标记,也不告诉算法应该怎么做的情况下,先尝试做出一些行为,得到一个结果,然后通过判断这个结果的正误对之前的行为进行反馈,再由这个反馈来调整之前的行为。通过不断的调整,算法能够学习到在什么样的情况下选择什么样的行为可以得到最好的结果。谷歌 DeepMind 就是用强化学习的方法在 Atari 游戏和围棋中取得了突破性进展。

应用范围:为自动驾驶汽车提供 3D 导航的城市街道图,在共享模型环境下实现多个代理的学习和互动,迷宫游戏,赋予非玩家视频游戏中的角色人类行为。

公司:DeepMind(谷歌),Prowler.io,Osaro,MicroPSI,Maluuba (微软),NVIDIA,Mobileye 等。

主要研究人员: Pieter Abbeel(OpenAI),David Silver,Nando de Freitas,Raia Hadsell(谷歌 DeepMind),Carl Rasmussen(剑桥),Rich Sutton (Alberta),John Shawe-Taylor(UCL)等等。

2. 生成模型

与判别模型不同的是,生成方法可以由数据学习联合概率密度分布,然后求出条件概率分布作为预测的模型,即生成模型。它的基本思想是首先建立样本的联合概率概率密度模型,然后再得到后验概率,再利用其进行分类。2014 年,蒙特利尔大学的 Ian Goodfellow 等学者发表了论文 《Generative Adversarial Nets》 ,即“生成对抗网络”,标志了 GANs 的诞生。这种生成对抗网络就是一种生成模型(Generative Model),它从训练库里获取很多训练样本,并学习这些训练案例生成的概率分布。GANs 的基本原理有 2 个模型,一个是生成器网络(Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声(Random Noise) 转变成新的样本。另一个叫做判别器网络(Discriminator Network),它可以同时观察真实和假造的数据,判断这个数据到底是真的还是假的。这种模型是用大规模数据库训练出的, 具有比其他无监督学习模型更好的效果。

应用范围:用于真实数据的建模和生成,模拟预测时间序列的可能性,比如为强化学习制定计划,在图像,视频,音乐,自然语句等领域都有应用,比如预测图像的下一帧是什么。

公司:Twitter Cortex,Adobe, 苹果,Prisma, Jukedeck,Creative.ai,Gluru, Mapillary,Unbabel 等。

主要研究人员:Ian Goodfellow (OpenAI) , 大神Yann LeCun 以及Soumith Chintala(Facebook AI Research),Shakir Mohamed 以及 Aäron van den Oord(谷歌 DeepMind) 等等。

3. 记忆网络

记忆网络指的是带有内存的神经网络。为了使 AI 系统能够在多样化的现实社会中得到更好的推广,它们必须不断学习新的任务,并“记住”自己是如何执行任务的。然而,传统的神经网络并不能做到这些。原因是当它们在执行 B 任务时,网络中对于解决 A 任务的权重发生了改变。

不过,有几种强大的架构能够赋予神经网络不同程度的记忆,比如长短期记忆网络 LSTM,它能够处理和预测时间序列。还有 DeepMind 的新型机器学习算法“ 可微分神经计算机”DNC,它将“神经网络”计算系统与传统计算机存储器结合在一起,这样便于它浏览和理解复杂的数据。

应用范围:这种学习代理可以应用到多种环境中,比如机械臂控制物体,时间序列的预测(金融市场,物联网等)。

公司:Google DeepMind,NNaisense ,SwiftKey/微软等

主要研究人员: Alex Graves, Raia Hadsell,Koray Kavukcuoglu(Google DeepMind),Jürgen Schmidhuber (IDSAI),Geoffrey Hinton(Google Brain/Toronto)等等。

4. 针对小数据集的学习,构建更小的模型

大家都知道,基于大量数据集可以构建出色表现的深度学习模型,比如著名的 ImageNet,作为最早的图片数据集,它目前已有超过 1400 万张被分类的图片。如果没有大数据集,深度学习模型可能就难以有良好的表现,在诸如机器翻译和语音识别上也难执行复杂任务。这种数据需求在使用单个神经网络处理端到端问题时会增长,即把语音的原始音频记录作为“输入→输出”语音的文本转录。如果想要 AI 系统用来解决更多具有挑战性,敏感或耗时的任务,那么开发出能够从较小的数据集学习的模型非常重要。在对小数据集进行培训时,也存在一些挑战,比如处理异常值以及培训和测试之间数据分布的差异。此外,还有一种方法是通过迁移学习来完成。

应用范围:通过模拟基于大数据集的深层神经网络的表现,训练浅层网络具备同等性能,使用较少的参数,但却有深度神经网络同等性能的模型架构(如 SqueezeNet),机器翻译等。

公司:Geometric Intelligence/Uber,DeepScale.ai,微软研究院, Curious AI 公司,Google,Bloomsbury AI

主要研究人员:Zoubin Ghahramani (剑桥),Yoshua Bengio(蒙特利尔大学), Josh Tenenbaum(麻省理工学院),Brendan Lake (纽约大学),Oriol Vinyals(Google DeepMind) , Sebastian Riedel (UCL) 等。

5. 用于推理和训练的硬件

人工智能的发展依仗多项技术的推荐,而我们常说的 GPU 就是促进 AI 进步的主要催化剂之一。与 CPU 不同,GPU 提供了一个大规模并行架构,可以同时处理多个任务。考虑到神经网络必须处理大量(通常是高维的) 数据,在 GPU 上的训练比 CPU 快得多。这就是为什么 GPU 最近很受各个科技大佬追捧的原因,其中包括众人熟知的 NVIDIA 、英特尔、高通、AMD 以及谷歌。

然而,GPU 并不是专门用于培训或者推理的,它们在创建之始是为了渲染视频游戏中的图形。GPU 具有超高的计算精度,但这也带来了存储器带宽和数据吞吐量问题。这为包括谷歌在内的一些大公司开辟了竞竞争环境,专门为高维机器学习应用设计和生产的芯片顺势而生。通过设计出新的芯片可以改善内存带宽等问题,或许也能具备更高的计算密度,效率和性能。人工智能系统给其所有者提供了更快速有效的模型,从而形成“更快,更有效的模型培训→更好的用户体验→更多用户参与产品→创建更大的数据集→通过优化提高模型性能”这样的良性循环。

应用范围:快速训练模型(尤其是在图像上),物联网,云领域的 IaaS,自动驾驶汽车,无人机,机器人等。

公司:Graphcore, Cerebras,Isocline Engineering,Google ( TPU ),NVIDIA ( DGX-1 ),Nervana Systems (Intel),Movidius ( Intel ), Scortex 等。

6.仿真环境

为人工智能生成训练数据通常具有挑战性,但是为了让这项技术可以运用在现实世界中,必须要将它在多样化环境中进行普及。而如果在仿真环境中训练机器学习,随后就能把知识迁移到真实环境中。这无疑会帮助我们理解 AI 系统是怎么学习的,以及怎样才能提升 AI 系统,还会大大加速机器人的学习速度。仿真环境下的训练能帮助人们将这些模型运用到现实环境中。

应用范围:学习驾驶,制造业,工业设计,游戏开发,智能城市等。

公司:Improbable,Unity 3D,微软,Google DeepMind/Blizzard,OpenAI,Comma.ai,Unreal Engine,Amazon Lumberyard 等。

主要研究人员: Andrea Vedaldi (牛津大学)等。

Via medium

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏华章科技

人工智能、机器学习、深度学习,三者之间的同心圆关系

理解三者之间关系的最简便方法就是将它们视觉化为一组同心圆——首先是最大的部分人工智能——然后是后来兴旺的机器学习——最后是促使当下人工智能大爆发的深度学习——在...

684
来自专栏腾讯技术工程官方号的专栏

腾讯AI Lab副主任俞栋在GMIS 2017大会上的演讲:语音识别领域的四项前沿研究

本文转载自机器之心 作者:黄小天 5 月 27 日,由机器之心主办、为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。大会第一天...

1895
来自专栏机器之心

学界 | 完善强化学习安全性:UC Berkeley提出约束型策略优化新算法(附代码)

选自BAIR Blog 作者:Joshua Achiam 机器之心编译 参与:Smith、黄小天、邱陆陆 强化学习作为深度学习的一个强大分支成就卓然,在电子游戏...

3136
来自专栏机器之心

让AI掌握星际争霸微操:中科院提出强化学习+课程迁移学习方法

选自arXiv 机器之心编译 在围棋之后,即时战略游戏星际争霸是人工智能研究者们的下一个重要目标。近日,中科院自动化所提出了一种强化学习+课程迁移学习方法,让 ...

3359
来自专栏大数据挖掘DT机器学习

机器学习工程师31门课程(视频):从新手到专业

机器学习不仅仅是模型 产生这个问题的原因就是所有人都以为机器学习的模型就是机器学习本身,以为对那些个算法理解了就是机器学习的大牛了,但实际上完全不是这样的。 ...

36018
来自专栏数据科学与人工智能

余凯在清华的讲座笔记

2014.4.4,余凯在清华FIT楼做了“Deep Learning Unfolds the Big Data Era”的讲座。感觉这个讲座还是比较high-l...

22610
来自专栏AI科技评论

UC Berkeley 讲座教授王强:Deep Learning 及 AlphaGo Zero(上)

AI 科技评论按:北京时间 10 月 19 日凌晨,DeepMind 在 Nature 上发布论文《Mastering the game of Go witho...

3547
来自专栏机器之心

深度 | 生产级深度学习的开发经验分享:数据集的构建和提升是关键

本文从生产层面强调了深度学习项目开发中需要更加重视数据集的构建,并以作者本人的亲身开发经验为例子,分享了几个简单实用的建议,涉及了数据集特性、迁移学习、指标以及...

780
来自专栏新智元

【自监督学习机器人】谷歌大脑首次实现机器人端到端模仿人类动作 | 视频

【新智元导读】 机器人仅需观察人类行为就能模仿出一模一样的动作,这一机器人领域发展的长期目标最近被谷歌大脑“解锁”。在新发布的一项研究中,谷歌大脑团队介绍了他们...

3455
来自专栏ATYUN订阅号

研究者开发深度学习方法重建模糊图像

来自加利福尼亚州劳伦斯利弗莫尔国家实验室的研究人员开发了一种基于深度学习的方法,可以在不展示原始图像的情况下重建模糊的或马赛克图像。这项工作首次提供单一无监督...

663

扫描关注云+社区