车品觉:数据化思维——答案不是结果,方法才是

我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一切正常,可以让我踏实下来。你认为,会是哪三个指标呢?”

绝大多数应聘者对这个问题的回答比较一致:第一个是流量;第二个是交易量;第三个是其他,这个其他包括转化率、交易额等。

当他们这样回答完后,我会反问他们:“刚刚我问的问题,你真的听清楚了吗?”这时候,有人会回答:“我听清楚了,答案就是这三个数据。”往往这个时候,我会提醒应聘者说:“请注意,我要的数据是给CEO看的,而且还是顶级电商的CEO,而且时间轴还是周敏感数据。”面试进行到这一环节,我发现大部分面试者根本听不懂“CEO”的含义。事实上,既然是CEO,就意味着他是公司里的最高领导层,那么给他看的东西明显要与其他人不同。在这个例子中,我们会发现绝大多数应聘者很少会换位思考。也就是说,事实上,他们都是从自己的角度来思考,而不是以一个数据分析师、一个要给CEO汇报三个数据指标的分析师的身份来思考问题。

那么,什么是以数据分析师的身份来思考问题呢?通常来说,在我问出问题时,作为数据分析师的你首先要想的是CEO 会关注什么数据,是长期的,还是短期的?是风险最大的,还是风险一般的?或者是最近发生了什么事情?以及给CEO 提供的数据要有什么注意事项,等等。

所以,我要再问问应聘者:“当你坐在面试桌对面给我答案的时候,有没有想过在星期一的早上,这家知名电商的CEO 真正想看的是什么?”再想想这个问题,你到底有没有真正听清楚“CEO”、“知名电商”、“周敏感数据”这些关键词?CEO 要的是“踏实”——他听完了就可以安心地吃早饭了。

在面试时,如果面试者不对这几个问题进行询问就贸然回答的话,满分是10分,我只会给5 分。因为这个问题里面本身就有很多问题,比如,什么是踏实?踏实是一个概念,你不问清楚“踏实”的含义,就给我三个指标,无论如何都是错的。

在正常情况下,首先不要急于回答我提出的问题,而是先问清楚什么是踏实,切勿自己先做假定。以下,我们可以假定一个相对理想的面试场景。

你反问:“什么是踏实的状况?”

我回答道:“最近这家电商和另一家电商在打价格战,而它最近又新推出了图书类目,那么CEO 自然最关注的是这些图书的业务做得好不好。”

你再问:“什么是好?是否基于每天来买书的新增用户和原有用户购书的数量多少?而且,CEO 是希望更多地用书来吸引新用户,还是想通过图书业务的推广让现有的用户进行交叉购买行为?”

在这些思考结束之前,你绝对不能给出指标。因为,在没有解决一个问题的内涵之前,任意给出的一个指标,必错无疑。所以,我才会问应聘者到底听清楚问题没有。

在我做面试官的经历中,很多看似有经验的数据分析师,往往在我提出的问题还没有解释清楚时就抢着作答。绝大多数人在思考不到一秒钟的时间里就给出了答案,而这一秒钟的答案,我可以确定他们根本没有听清楚我的问题。

通常这个时候,我会再给他们一次机会,问他们:“刚才你给我的这个答案,如果我给你满分10 分,你会给自己打几分?”而此时,大部分人只会打6~7 分。

当应聘者给自己打7 分时,我会反问:“另外3 分丢的原因是什么?”他开始反思,说自己刚才给的可能并不是CEO 想要的指标,因为他对这家电商的近况不是很了解……

接下来,当我再反问:“刚才我的问题是‘假如我是一家知名电商的CEO,今天是星期一早上9 点钟,你给我三个数据指标向我证明在过去的一周里,企业运营得一切正常’,你听清楚了吗?如果你确认自己清楚了,能请你再给我一次答案吗?”

这时候,聪明的人不会再用一秒钟就给我答案了,而是重新思考,开始问问题,再给出答案。这时候的答案,当然会比第一个答案要好得多。最后,当我再问他:“现在,10 分满分你给自己打多少分?”此时,他们自己给出的分值通常都会高一些。至此,我的面试也就结束了。

事实上,关于这个问题,我根本就不关注打分的结果。当然,如果评价是10分,那就不用面试了,因为在没有仔细考虑过答案的时候就自信满满地回答,这种人必然无法承担做数据分析师的责任。虽然,自信是对的,但是思考更重要。作为一名数据分析师如果你不把自己的分析与当下结合,是没法进步的。

有趣的是,当我把这个问题贴在网上时,还是会有很多人追问我答案是什么。CEO 关心的到底是哪三个数据。这时候,我真的很想说,答案不是结果,方法才是。

作者:阿里巴巴集团副总裁、数据委员会会长 车品觉

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2014-09-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据的力量

【用户运营】我看过的最好的关于用户运营文章:用户运营的定义、演变和方法论

2275
来自专栏罗超频道

为什么说豆瓣是一款好产品?

罗超为《全球商业经典》杂志撰稿,发表于2013年6月刊。网络版为虎嗅网独家首发,2013年6月10日首页头条。 虎嗅注:本文由虎嗅网作者罗超(爱科技网创始人)发...

3184
来自专栏CDA数据分析师

数据分析最容易犯的7个错误,请绕行!

要实现大数据分析项目的最佳实践并非易事。正因如此,Gartner研究总监Svetlana Sicular题为“大数据7大失败案例”的报告吸引了思科工程师Kare...

2117
来自专栏数据的力量

数据化思维:答案不是结果,方法才是

我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业...

724
来自专栏大数据挖掘DT机器学习

互联网思维——如何运用数据分析搞定零售

互联网时代的信息化,我觉得首先要定一个基调,互联网时代的管理系统信息化应该如何利用新的技术手段为用户企业改善经营,开拓市场提供支持。首先来看互联网...

3244
来自专栏PPV课数据科学社区

数据面试官告诉你 答案不是结果,方法才是

我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业...

3437
来自专栏华章科技

揭秘微信用户行为习惯,用户究竟爱看什么?

只有深度了解用户的习惯和行为,才能做出最火的内容;用户为何选择分享某些信息,又为何对某些信息视而不见,了解这些有助于在注意力的竞争中占尽先机。

721
来自专栏WeaponZhi

AI 开篇—说说我学习 AI 的动机

我目前的学习进度是,Python 的一些课程和基础已经过了一遍,当然,博客进度稍慢,Python 方面的博客当然也会继续穿插跟进,不知道各位同学的进度怎么样了呢...

2537
来自专栏PPV课数据科学社区

R语言在数据科学中的应用

功能介绍 大数据时代,我们需要一个强大的软件Runing!!!R语言出现了!!!这里是R语言最好的学习交流平台,包括R语言书籍,R语言课程,R语言程序包使用,教...

2705
来自专栏测试开发架构之路

软件测试小白必读

软件测试作为一个行业繁荣发展,也只是近四五年的事情,相关培训也是雨后春笋,自2011年入行,看过太多人转行,看过一些人带着未知想入行,真真是围城里的人想出去,围...

3307

扫码关注云+社区