梯度下降法快速教程 | 第三章:学习率衰减因子(decay)的原理与Python实现

前言

梯度下降法(Gradient Descent)是机器学习中最常用的优化方法之一,常用来求解目标函数的极值。

其基本原理非常简单:沿着目标函数梯度下降的方向搜索极小值(也可以沿着梯度上升的方向搜索极大值)。

但是如何调整搜索的步长(也叫学习率,Learning Rate)、如何加快收敛速度以及如何防止搜索时发生震荡却是一门值得深究的学问。

上两篇文章《梯度下降法快速教程 | 第一章:Python简易实现以及对学习率的探讨》与《梯度下降法快速教程 | 第二章:冲量(momentum)的原理与Python实现》分别介绍了学习率大小对搜索过程的影响以及“冲量”的原理以及如何用“冲量”来解决收敛速度慢与收敛时发生震荡的问题。接下来本篇文章将介绍梯度下降法中的第三个超参数:decay。

PS:本系列文章全部源代码可在本人的GitHub:monitor1379中下载。

学习率衰减因子:decay

首先先回顾一下不同学习率下梯度下降法的收敛过程(示例代码在GitHub上可下载):

demo1_GD_lr运行结果

从上图可看出,学习率较大时,容易在搜索过程中发生震荡,而发生震荡的根本原因无非就是搜索的步长迈的太大了。

回顾一下问题本身,在使用梯度下降法求解目标函数func(x) = x * x的极小值时,更新公式为x += v,其中每次x的更新量v为v = - dx * lr,dx为目标函数func(x)对x的一阶导数。可以想到,如果能够让lr随着迭代周期不断衰减变小,那么搜索时迈的步长就能不断减少以减缓震荡。学习率衰减因子由此诞生:

lr_i = lr_start * 1.0 / (1.0 + decay * i)

上面的公式即为学习率衰减公式,其中lr_i为第i次迭代时的学习率,lr_start为原始学习率,decay为一个介于[0.0, 1.0]的小数。

从公式上可看出:

  • decay越小,学习率衰减地越慢,当decay = 0时,学习率保持不变。
  • decay越大,学习率衰减地越快,当decay = 1时,学习率衰减最快。

使用decay的梯度下降法Python实现代码如下:

import numpy as npimport matplotlib.pyplot as plt# 目标函数:y=x^2def func(x): return np.square(x)# 目标函数一阶导数:dy/dx=2*xdef dfunc(x): return 2 * xdef GD_decay(x_start, df, epochs, lr, decay): """ 带有学习率衰减因子的梯度下降法。 :param x_start: x的起始点 :param df: 目标函数的一阶导函数 :param epochs: 迭代周期 :param lr: 学习率 :param decay: 学习率衰减因子 :return: x在每次迭代后的位置(包括起始点),长度为epochs+1 """ xs = np.zeros(epochs+1) x = x_start xs[0] = x v = 0 for i in range(epochs): dx = df(x) # 学习率衰减 lr_i = lr * 1.0 / (1.0 + decay * i) # v表示x要改变的幅度 v = - dx * lr_i x += v xs[i+1] = x return xs

使用以下测试与绘图代码demo3_GD_decay来看一下当学习率依次为lr = [0.1, 0.3, 0.9, 0.99]与decay = [0.0, 0.01, 0.5, 0.9]时的效果如何:

def demo3_GD_decay():     
line_x = np.linspace(-5, 5, 100)     
line_y = func(line_x)     
plt.figure('Gradient Desent: Decay')      
x_start = -5     
epochs = 10      
lr = [0.1, 0.3, 0.9, 0.99]     
decay = [0.0, 0.01, 0.5, 0.9]      
color = ['k', 'r', 'g', 'y']      
row = len(lr)     
col = len(decay)     
size = np.ones(epochs + 1) * 10     
size[-1] = 70    
 for i in range(row):        
for j in range(col):             
x = GD_decay(x_start, dfunc, epochs, lr=lr[i], decay=decay[j])             
plt.subplot(row, col, i * col + j + 1)             
plt.plot(line_x, line_y, c='b')             
plt.plot(x, func(x), c=color[i], label='lr={}, de={}'.format(lr[i], decay[j]))             
plt.scatter(x, func(x), c=color[i], s=size)             
plt.legend(loc=0)
plt.show()

运行结果如下图所示,其中每行图片的学习率一样、decay依次增加,每列图片decay一样,学习率依次增加:

demo3_GD_decay运行结果

简单分析一下结果:

  • 在所有行中均可以看出,decay越大,学习率衰减地越快。
  • 在第三行与第四行可看到,decay确实能够对震荡起到减缓的作用。

那么,不同decay下学习率的衰减速度到底有多大的区别呢?接下来设置起始学习率为1.0,decay依次为[0.0, 0.001, 0.1, 0.5, 0.9, 0.99],迭代周期为300时学习率衰减的情况,测试与绘图代码如下:

def demo4_how_to_chose_decay(): lr = 1.0 iterations = np.arange(300) decay = [0.0, 0.001, 0.1, 0.5, 0.9, 0.99] for i in range(len(decay)): decay_lr = lr * (1.0 / (1.0 + decay[i] * iterations)) plt.plot(iterations, decay_lr, label='decay={}'.format(decay[i])) plt.ylim([0, 1.1]) plt.legend(loc='best') plt.show()

运行结果如下图所示。可以看到,当decay为0.1时,50次迭代后学习率已从1.0急剧降低到了0.2。如果decay设置得太大,则可能会收敛到一个不是极值的地方呢。看来调参真是任重而道远:

demo4_how_to_chose_decay运行结果

后记

关于“梯度下降法”的三个超参数的原理、实现以及优缺点已经介绍完毕。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-12-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏深度学习那些事儿

浅谈深度学习中超参数调整策略

深度学习中,设计模型以及保证模型的正确性是首要需要考虑的。当模型设置完成时,理论上模型不存在问题,实现效果也通过计算可以复现出来。一切准备就绪后,那么接下来需要...

28811
来自专栏应兆康的专栏

16. 清理贴错标签的开发集和测试集样本

1171
来自专栏机器之心

教程 | 如何快速训练免费的文本生成神经网络

2425
来自专栏AI科技评论

开发 | 训练一个AI给颜值打分,公平公正!

AI 科技评论按:本文作者灰灰,本文原载于作者的知乎专栏。授权转载。 机器学习是不是很无聊,用来用去都是识别字体。能不能帮我找到颜值高的妹子,顺便提高一下姿势水...

3245
来自专栏AI研习社

你在数据预处理上花费的时间,是否比机器学习还要多?

Nuts-ml 是一个新的 Python 数据预处理库,专门针对视觉领域的 GPU 深度学习应用。 它以独立、可复用的单元模块的形式,提供主流数据预处理函数。...

3688
来自专栏深度学习那些事儿

浅谈深度学习中超参数调整策略

深度学习中,设计模型以及保证模型的正确性是首要需要考虑的。当模型设置完成时,理论上模型不存在问题,实现效果也通过计算可以复现出来。一切准备就绪后,那么接下来需要...

1785
来自专栏PPV课数据科学社区

R语言中不能进行深度学习?

摘要: R语言现在能也进行深度学习了,而且和python一样好,快来试一试吧。 众所周知,R语言是统计分析最好用的语言。但在Keras和TensorFlow的帮...

4299
来自专栏CreateAMind

运动信息向量的神经网络学习 code、ppt、视频ok

官方代码还未开放, http://visualdynamics.csail.mit.edu/

622
来自专栏数据派THU

教你用Keras和CNN建立模型识别神奇宝贝!(附代码)

在今天博客的最后,你将会了解如何在你自己的数据库中建立、训练并评估一个卷积神经网络。

4011
来自专栏数据小魔方

sparklines迷你图系列16——Distribution(Spread)

今天跟大家分享sparklines迷你图系列16——Distribution(Spread)。 这种图表用中文翻译是在费解,没有特别合适的叫法,但是实际上它是一...

2806

扫码关注云+社区