独家丨基于规则和检索的聊天机器人引擎

AI 科技评论按:本文作者王海良,呤呤英语开发总监,北京 JavaScript/Node.js 开发者社区的运营者,曾就职 IBM 创新中心。本文为系列文章第二篇,由 AI 科技评论独家首发。

第一篇传送门:《聊天机器人的发展状况与分类》。在上一篇文章中,介绍了聊天机器人目前的发展。本篇主要介绍基于规则的,检索的聊天机器人引擎 - Bot Engine.

问题域

Speech to Text => Logic => Text to Speech

STT和TTS,目前有很多厂商提供技术产品:

  • Speech to Text 语音识别技术

Google Cloud Platform, IBM Watson API, 云知声,科大讯飞

  • Text to Speech 语音合成技术

IBM Watson API Docs demo

经过多年的研究,尤其是深度学习的采用,在这两项技术上取得了突破性进展。今天本文所要讨论的是logic,而且是基于规则引擎的logic, 基于机器学习的部分将在以后的文章中讨论。

Conversation Model

在两个人之间的对话,可以用下面这个模型表示,双方头脑中所要向对方表达的目标,需要通过语言来交换意见,为了达成共识,二者需要在一个语境下。

为了支撑这个模型,在设计Bot Engine过程中,要考虑如下的要点:

  • 低成本的构建对话
  • 能区分不同类型的对话
  • 规范化输入
  • 高效率的规则引擎
  • 用户画像
  • 回复时,考虑对话的历史记录

低成本的构建对话

构建聊天内容最好是不需要有开发技能,而且有的开发者也没有很好的聊天的技能。即便像Botframework这样的大厂的产品,在构建对话时,都不够友好,只能面向有开发技能的人,而且是一种硬编码。这样对于维护对话很不利。

  • 使用Botframework的waterfall,设计对话的人需要了解builder.Prompts接口和session.beginDialog|endDialog。这样做很不合理。

exports.start = [(session, arg, next) => { builder.Prompts.text(session, "Do you want to start Class now?"); }, (session, results) => { co(function*() { return yield watson.sentiment(results.response); }).then(function(o) { let reply; switch (o.docSentiment.type.toLowerCase()) { case 'positive': reply = '_begin_'; break; case 'negative': reply = "Got it." break; case 'neutral': reply = "Ok, then."; break; } if (reply == '_begin_') { session.beginDialog('/daily_lessons/vocabulary'); } else { builder.Prompts.text(session, reply); session.endDialog(); } }); }];

而另外一方面,使用script的方式,显得更合理,比如SuperScript.

+ Do you want to start Class now? - start_class + ~yes % Do you want to start Class now - Great, ^redirectTo(/daily_lessons/vocabulary) + ~no % Do you want to start Class now - Ok, then.

还有rivescript, chatscript, 同样类似于superscript方式进行构建对话。

能区分不同类型的对话

设计对话时,至少有三种类型的对话:

  • system

系统对话,只能聊一次,或者只能由系统主动发出。比如自我介绍,bot和小明进行初次对话,bot会问:“你叫什么名字?”。小明回答“小明”。那么bot就知道"id:xxx"是小明。而将来bot都不应该再问这个问题。

  • daily

这些是bot可以重复和用户聊的主题,可能并不是每天,它们可以每隔一段频率就触发,比如:问候,节日祝福,“你在做什么”, etc.

  • business

和一些闲聊的机器人不同,bot应该提供一些价值,这些价值可能是个人信息助手, 导购,教育, 播放音乐。

声明对话类型:

> topic:business (vocabulary class) + Do you want to start Class now? - start_class + ~yes % Do you want to start Class now - Great, ^redirectTo(/daily_lessons/vocabulary) + ~no % Do you want to start Class now - Ok, then. <

所以,一个对话看起来像是这个样子。

规范化输入

表达同样的意思,可以有多种表示方法。

whats the color of the calanders what is the colour of the calenders what be the colour of the calender

在将输入语句传给规则引擎前,要先做规则化处理。比如:

  • tokenized - 分词
  • stemmed - 英文单词取词根
  • lemmatized - 英文单词变形的归类(例如单复数归类)
  • part-of-speech (POS) tagger - reads text in some language and assigns parts of speech to each word
  • named entity recognizer (NER) - [ labels sequences of words in a text which are the names of things] 专有名词 - 人名、地名、组织名、URL链接、系统路径等

这里需要结合很多工具库来实现:NLTK, Stanford CoreNLP, Jieba分词,Wordnet, ConceptNet.

比如,借助Stanford CoreNLP,可以有下面的标注:

经过规范化输入,在规则引擎中,可以依赖词性和函数实现更智能的回答。

高效率的规则引擎

Bot可以有大量的主题,即便是只有100主题,每个主题15个对话,那就是1500个规则。如果只是单机运行,至少要进行下面两个优化:

  • 排序

通过聊天的记录和关键字,先给对话栈排序。

排序的思路大概是这样:

1) 查看当前对话,是否还有下文,一个对话的下文可以对应多个规则。

如果有下文,检测是否一个规则能匹配上输入。如果匹配上了,回复。 如果没有下文,或者没有规则能匹配上,进入次优匹配。

2) 次优匹配是将聊天主题的历史记录,使用TF-IDF算法进行排序。

简单说,就是使用一个函数计算用户聊天的对应主题频率。给不同的聊天主题加权重。在次优匹配中,都是处理用户曾经聊过的主题。

3) 在次优匹配中,没有命中,进入其他匹配。

其他匹配包括了以前没有聊过的主题。

  • 并发

在排序后,去同时处理匹配运算,将命中的规则的回复,按照排序的顺序放到数组里,然后,从数组中取第一个元素。这样就比按照顺序一个一个检测快很多。

比如,一些Node.js模块:async

https://www.npmjs.com/package/async

用户画像

在和用户聊天的过程中,获取到的用户相关的信息,有必要记录在数据库中,这其实是构建知识图谱的过程。

知识图谱所用的数据库是存在三个字段的结构化数据:

{ "subject": "Mao", "predict": "chairman", "object": "China" }

由此构建了一个关系:

而B又可以跳转到D。

目前,较为成熟的商业产品和开源方案都有。

Google Knowledge Graph API

链接:https://developers.google.com/knowledge-graph/

cayley graph

链接:https://github.com/cayleygraph/cayley

在Bot Engine中,可以得到相关用户的Knowledge Graph.

this.user.memory.get( ...) this.bot.createUserFact( ...)

使用知识图谱,除了对实体之间完成关系构建外,还有一个原因是,搜索速度非常快,搜索功能强大。

SuperScript

介绍了这么多,那么到底怎么实现一个Bot Engine呢?经过了很多比较后,我觉得基于SuperScript实现Bot Engine是可行的。主要是下面这几点:

  • 社区活跃:目前稳定版本v0.12.2没有bug, 最新版v1.0.0也在快速开发。
  • 轻便灵活: 将SuperScript的源码读了一遍,觉得即便是作者不维护了,我也可以维护。
  • 功能强大:在上面讨论的问题中,SuperScript都是有涉及的。

对话脚本

  • topic type - 话题 https://github.com/superscriptjs/superscript/wiki/Topics
  • conversation - 对话 https://github.com/superscriptjs/superscript/wiki/Conversations
  • function - 插件和函数 https://github.com/superscriptjs/superscript/wiki/Plugins-and-Functions

Get started

  • npm install superscript https://github.com/superscriptjs/superscript

var superscript = require("superscript"); new superscript({ ...}, function(err, bot){ bot.reply("userId", "hello", function(err, reply){ // do your magic }) })

Conclusion

很多人预计2017年,AI方向最可能取得成功的领域是聊天机器人。那么,在这种情况下,面向聊天机器人的架构设计,是一个热门问题。包括Google,Facebook都有可能发布类似于微软的Botframework平台。而Bot Engine, 一种处理对话的引擎,起着很关键的作用。在开源社区,还没有看到哪个呼声非常高的实现,SuperScript,至少在JavaScript社区,是一个不错的选择。

在下一篇文章中,我将介绍使用深度学习技术,依靠聊天语料,训练Bot Model.

Reading List

NaturalNode - General natural language facilities for node.

SuperScript - A dialog system and bot engine for conversational UI's.

Stanford CoreNLP - a suite of core NLP tools

Natural Language Toolkit - NLTK is a leading platform for building Python programs to work with human language data.

How to Cook a Graph Database in a Night - A Knowledge Graphic tool based on LevelDB.

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏xingoo, 一个梦想做发明家的程序员

windows程序设计-第四章 system1.c

/*---------------------------------------------------- SYSMETS1.C -- System M...

23710
来自专栏成长道路

JDBC动态SQL语句连接orcale数据库的工具类

import java.sql.Connection; import java.sql.DriverManager; import java.sql.P...

2510
来自专栏码匠的流水账

聊聊EurekaRibbonClientConfiguration

spring-cloud-netflix-eureka-client-2.0.0.RELEASE-sources.jar!/org/springframewor...

1171
来自专栏张善友的专栏

Using sqlite with .NET

The other day I found that there is a .NET wrapper for sqlite. sqlite is a very ...

2298
来自专栏用户画像

SQL Server 数据库连接类

904
来自专栏海说

Java应用中常见的JDBC连接字符串(SQLite、MySQL、Oracle、Sybase、SQLServer、DB2)

Java应用中常见的JDBC连接字符串 Java应用中连接数据库是不可或缺的,于是便整理一些可能用到的JDBC的jar包及其相匹配的URL,以备日后查阅。 1)...

2730
来自专栏Pulsar-V

C#下各种获取时间的姿势

直接贴代码吧 DateTime dt = DateTime.Now; Label1.Text = dt.ToString();//2005-11-5 13:21...

3236
来自专栏吴小龙同學

时间工具类TimeUtil

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30...

3056
来自专栏听雨堂

想修改CSS

      下载了一个“通用”的CSS文件,本来想偷懒的,结果发现有问题,就是它用的颜色是变量定义的,无法识别。我又找不到在哪里可以定义。 BODY{     ...

20410
来自专栏DT乱“码”

连接数据库操作

package com.chendongj.dbUtil; import java.sql.Connection; import java.sql.Drive...

2009

扫码关注云+社区