业界 | 百度引入Ring Allreduce算法,大规模提升模型训练速度

AI科技评论消息,美国西部时间2月21日,百度硅谷人工智能实验室(SVAIL)宣布将Ring Allreduce算法引进深度学习领域,这让基于GPU训练的神经网络模型的训练速度显著提高。

Ring Allreduce是高性能计算(HPC)领域内一个众所周知的算法,但在深度学习领域内的应用相对较少。而百度SVAIL实验室研究员Andrew Gibiansky也录制了一个视频介绍了关于Ring Allreduce的基本情况。

高效并行训练的需求

随着神经网络参数越来越庞大,从几亿个参数与到数十亿参数,所需的GPU运算节点也在增加。然而,节点数量越多,整个系统的效率就会降低。

深度学习在多个GPU上训练神经网络通常比较困难,因为大家普遍采用的方法是,让多个GPU把数据发送给一个reducer GPU上,这会造成一种通信瓶颈,整个训练速度会因此拖慢。而且要训练的数据越多,则带宽瓶颈问题就显得越严重。

而ring allreduce算法移除了这种瓶颈,减少GPU发送数据花费的时间,而把时间更多用在处理有用工作上。SVAIL发布的博文中这样说道:

“ring allreduce 是这样一种算法——其通信成本是恒定的,与系统中的 GPU 的数量无关,并且仅由系统中的 GPU 之间的最慢连接来确定。事实上,如果在通信成本上你只考虑带宽这一因素(并忽略延迟),那么 ring allreduce 就是一个最佳的通信算法 。 算法的进行分两步:第一步,scatter-reduce;第二步,allgather。在第一步中,GPU 将交换数据,使得每个 GPU 最终都有一个最终结果的数据块。在第二步中,GPU 将交换那些块,使得所有 GPU 最终得到完整的最后结果。“

Ring Allreduce 中的 GPU 被布置在一个逻辑环路(logical ring)之中。每个 GPU 左右两个各有一个 GPU,并且只从左边的 GPU 接收数据,再把数据发送至右边的 GPU。

Ring Allreduce在接受采访时说道:

“Ring allreduce可以让我们在多设备和多节点的情况下,更加有效地平均梯度。在训练中使用这个带宽优化的算法,你可以显著减少通信开销,并由此扩展到更多的设备上,同时仍然保留同步随机梯度下降的确定性和可预测的收敛性。”

百度已经用这个算法来训练其语音识别模型,实验证明,与使用一个单独的reducer GPU相比,ring allreduce 可以将一个神经网络在40个GPU上的训练速度提升31倍。

百度也将这算法分享出来,发布了一个演示该 allreduce 算法的 C 语言库,也将该 allreduce 以补丁的形式整合到 TensorFlow 中。

另一个HPC与机器学习结合的例子

AI科技评论此前也报道过,最近日本东京技术研究院宣布,将在今年夏天启动日本“最快的AI超级计算机”项目,这个超级计算机名为Tsubame3.0,使用的是英伟达GPU加速芯片,使其性能较以往提升2倍。HPC市场与快速兴起的AI市场有很大不一样,超级计算机以往被用于例如天气预测、气候建模、太空和核模拟等领域,而针对AI优化的芯片开始将这两个领域结合起来。而百度这次,则将HPC领域的软件技术应用于深度学习领域,看起来,HPC和机器学习这两个领域,正在以非常快的速度融合。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人人都是极客

第一课:人工智能在嵌入式中的机会

嵌入式人工智能的机会 深度学习、机器学习、人工智能可以说是当下最火爆的字眼,随着 AlphaGo 的一炮走红,仿佛人人都谈论着人工智能,说话不带 DL、CNN ...

3246
来自专栏智能算法

2017年关于深度学习的十大预测

Carlos E. Perez对深度学习的2017年十大预测,让我们不妨看一看。有兴趣的话,可以在一年之后回顾这篇文章,看看这十大预测有多少准确命中:) ? 1...

4046
来自专栏灯塔大数据

每周学点大数据 | No.2大数据的特点、应用和算法

No.2期 大数据的特点、应用和算法 一、大数据的特点和应用 Mr. 王:大数据具有较大的数据量,和一般的数据相比,其具有如下一些特点。 ? —在数据量上,大...

3324
来自专栏AI科技评论

深度:机器如何模仿人类的学习方式?

导读: 古有算盘,今有计算机,人工智能(Artificial Intelligence,AI)始终是人类永恒又美好的梦想。然而,漫漫的历史长河中人类前仆后继,虽...

3374
来自专栏达观数据

编译 | 人工智能与大数据开发的 12个注意点

选自《智能Web算法》(第二版) 达观数据编译 ? 机器学习是人工智能研究领域的重要方向,在大数据时代里,对数据采集、挖掘、应用的技术越来越受到瞩目,并越来越...

3127
来自专栏人工智能头条

构建实战机器学习系统的10点经验(二)

1373
来自专栏新智元

深度学习框架大战:谁将夺取“深度学习工业标准”荣耀?

随着深度学习研究热潮的持续发酵,各种开源深度学习框架层出不穷,其中包括:Caffe、CNTK、MXNet、Neon、TensorFlow、Theano 和 To...

3616
来自专栏PPV课数据科学社区

人工智能与大数据开发的12个注意点

人工智能是近年来科技发展的重要方向,在大数据时代,对数据采集、挖掘、应用的技术越来越受到瞩目。在人工智能和大数据的开发过程中,有哪些特别需要注意的要点人工智能领...

3234
来自专栏量子位

华盛顿大学成立SAML实验室:陈天奇参与,推进未来AI系统全栈研究

昨天,TVM、XGBoost、cxxnet等机器学习工具的作者陈天奇宣布,自己所在的华盛顿大学新成立了一个实验室,组织代号“SAML”。

984
来自专栏技术翻译

每个人都应该了解机器学习

在过去的几个月里,我有机会与很多决策者讨论人工智能,特别是机器学习。他们的投资者已经向他们的一些高管询问他们的机器学习(ML)策略以及他们已经实施ML的地方。那...

914

扫码关注云+社区