pyTorch自然语言处理简单例子

最近在学pyTorch的实际应用例子。这次说个简单的例子:给定一句话,判断是什么语言。这个例子是比如给定一句话:

Give it to me

判断是 ENGLISH

me gusta comer en la cafeteria

判断是 SPANISH

就是这么简单的例子。

来看怎么实现: 准备数据 格式 [(语句,类型),...] data是train的时候用的语句,test_data是test的时候用的语句

data = [ ("me gusta comer en la cafeteria".split(), "SPANISH"), ("Give it to me".split(), "ENGLISH"), ("No creo que sea una buena idea".split(), "SPANISH"), ("No it is not a good idea to get lost at sea".split(), "ENGLISH") ] test_data = [("Yo creo que si".split(), "SPANISH"), ("it is lost on me".split(), "ENGLISH")]

因为文本计算机室识别不出来的,他们只认识01串,也就是数字。所以我们得把文本映射到数字上。

word_to_ix = {}for sent, _ in data + test_data: f

or word in sent:

if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) print(word_to_ix)

输出word_to_ix (意思是word to index)是:

{'me': 0, 'gusta': 1, 'comer': 2, 'en': 3, 'la': 4, 'cafeteria': 5, 'Give': 6, 'it': 7, 'to': 8, 'No': 9, 'creo': 10, 'que': 11, 'sea': 12, 'una': 13, 'buena': 14, 'idea': 15, 'is': 16, 'not': 17, 'a': 18, 'good': 19, 'get': 20, 'lost': 21, 'at': 22, 'Yo': 23, 'si': 24, 'on': 25}

这里先提前设置下接下来要用到的参数

VOCAB_SIZE = len(word_to_ix) NUM_LABELS = 2#只有两类 ENGLISH SPANISH

固定模板

def init(self, num_labels, vocab_size):初始化,就是输入和输出的大小。这里我们要输入是一个句子,句子最大就是拥有所有字典的词,这里也就是vocab_size(下面再说怎么将一句话根据字典转换成一个数字序列的),输出就是分类,这里分为2类,即num_labels。这里我们用的是线性分类 ,即nn.Linear()。

def forward(self, bow_vec):bow_vec是一个句子的数字化序列,经过self.linear()得到一个线性结果(也就是预测结果),之后对这个结果进行softmax(这里用log_softmax是因为下面的损失函数用的是NLLLoss() 即负对数似然损失,需要log以下)

class BoWClassifier(nn.Module):
#nn.Module 这是继承torch的神经网络模板     
def __init__(self, num_labels, vocab_size):         
 super(BoWClassifier, self).__init__()        
self.linear = nn.Linear(vocab_size, num_labels)    
def forward(self, bow_vec):     
   return F.log_softmax(self.linear(bow_vec))
def make_bow_vector(sentence, word_to_ix)

大概能看懂什么意思吧。就是把一个句子sentence通过word_to_ix转换成数字化序列.比如 sentence=我 是 一只 小 小 鸟 word_to_id={你:0,我:1,他:2,不:3,是:4,大:5,小:6,猪:7,鸟:8,,} make_bow_vector之后的结果是[0,1,0,0,1,0,2,0,1] view()就是改变下向量维数。这里是讲len(word_to_ix)1->1len(word_to_ix)

def make_bow_vector(sentence, word_to_ix): vec = torch.zeros(len(word_to_ix)) for word in sentence: vec[word_to_ix[word]] += 1 return vec.view(1, -1)

这个就不用说了吧 一样。(如果想知道torch.LongTensor啥意思的话。可以看看。Torch中,Tensor主要有ByteTensor(无符号char),CharTensor(有符号),ShortTensor(shorts), IntTensor(ints), LongTensor(longs), FloatTensor(floats), DoubleTensor(doubles),默认存放为double类型,如果需要特别指出,通过torch.setdefaulttensortype()方法进行设定。例如torch.setdefaulttensortype(‘torch.FloatTensor’)。 )

def make_target(label, label_to_ix): return torch.LongTensor([label_to_ix[label]])

这里再介绍下model.parameters()这个函数。他的返回结果是model里的所有参数。这里我们用的是线性函数,所以就是f(x)=Ax+b中的A和b(x即输入的数据),这些参数在之后的反馈和更新参数需要的。

model = BoWClassifier(NUM_LABELS, VOCAB_SIZE)
for param in model.parameters():    
print("param:", param)

可以看出A是2len(vocab_size),b是21

param: Parameter containing:Columns 0 to 9 0.0786 0.1596 0.1259 0.0054 0.0558 -0.0911 -0.1804 -0.1526 -0.0287 -0.1086-0.0651 -0.1096 -0.1807 -0.1907 -0.0727 -0.0179 0.1530 -0.0910 0.1943 -0.1148Columns 10 to 19 0.0452 -0.0786 0.1776 0.0425 0.1194 -0.1330 -0.1877 -0.0412 -0.0269 -0.1572-0.0361 0.1909 0.1558 0.1309 0.1461 -0.0822 0.1078 -0.1354 -0.1877 0.0184Columns 20 to 25 0.1818 -0.1401 0.1118 0.1002 0.1438 0.0790 0.1812 -0.1414 -0.1876 0.1569 0.0804 -0.1897

[torch.FloatTensor of size 2x26]param: Parameter containing: 0.1859 0.1245[torch.FloatTensor of size 2]

我们再看看model的def forward(self, bow_vec):怎么用。这里就想下面的代码一样,直接在mode()填一个参数即可,就调用forward函数。

sample = data[0] bow_vector = make_bow_vector(sample[0], word_to_ix) log_probs = model(autograd.Variable(bow_vector))
print("log_probs", log_probs)

输出是:(就是log_softmax后的值)

log_probs Variable containing:-0.6160 -0.7768[torch.FloatTensor of size 1x2]

我们这里看看在test上的预测

label_to_ix = { "SPANISH": 0, "ENGLISH": 1 }
for instance, label in test_data:     
bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix))     
log_probs = model(bow_vec)    
print log_probsprint next(model.parameters())[:,word_to_ix["creo"]]

结果是

Variable containing:
-0.5431 -0.8698
[torch.FloatTensor of size 1x2]
Variable containing:
-0.7405 -0.6480
[torch.FloatTensor of size 1x2]
Variable containing:
-0.0467  0.1065
[torch.FloatTensor of size 2]

下面就该进行重要的部分了。循环训练和更新参数 这里我们用的损失函数是nn.NLLLoss()负对数似然损失 优化依然用的最常见的optim.SGD() 梯度下降法 一般训练5-30次最终优化基本不再变化

每一步过程: a.首先都要model.zero_grad(),因为接下来要极端梯度,得清零,以防问题 b.将数据向量化(也可以说是数字序列化,转成计算机能看懂的形式) c.得到预测值 d.求损失loss_function e.求梯度loss.backward() f.更新参数optimizer.step()

loss_function = nn.NLLLoss() optimizer = optim.SGD(model.parameters(), lr=0.1)for epoch in range(100): for instance, label in data: model.zero_grad() bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix)) target = autograd.Variable(make_target(label, label_to_ix)) log_probs = model(bow_vec) loss = loss_function(log_probs, target) loss.backward() optimizer.step()

在测试集上测试

for instance, label in test_data:     
bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix))     
log_probs = model(bow_vec)   
 print log_probs

我们在结果上很容易看到第一个例子预测是SPANISH最大,第二个是ENGLISH最大。成功了。

Variable containing:-0.0842 -2.5161[torch.FloatTensor of size 1x2]Variable containing:-2.4886 -0.0867[torch.FloatTensor of size 1x2]

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏文武兼修ing——机器学习与IC设计

PyTorch60分钟教程学习笔记基本概念网络构建分类网络搭建,训练与测试

基本概念 Tensor tensor是的含义是张量,简单的理解可以将其当成三维矩阵,pytorch中的张量是对数据的一种封装,也是数据结构中最核心的部分之一。对...

3436
来自专栏腾讯移动品质中心TMQ的专栏

Tensorflow 的 word2vec 详细解释:basic篇

Word2Vec即Word to vector(词汇转向量)。我们希望词义相近的两个单词,在映射之后依然保持相近,词义很远的单词直接则保持很远的映射距离。

1.1K4
来自专栏人工智能LeadAI

深度学习实战 | 使用Kera预测人物年龄

01 问题描述 我们的任务是从一个人的面部特征来预测他的年龄(用“Young”“Middle ”“Old”表示),我们训练的数据集大约有19906多张照片及其每...

4685
来自专栏目标检测和深度学习

如何从零开发一个复杂深度学习模型

深度学习框架中涉及很多参数,如果一些基本的参数如果不了解,那么你去看任何一个深度学习框架是都会觉得很困难,下面介绍几个新手常问的几个参数。 batch 深度学习...

4167
来自专栏菩提树下的杨过

机器学习笔记(3):多类逻辑回归

仍然是 动手学尝试学习系列的笔记,原文见:多类逻辑回归 — 从0开始 。 这篇的主要目的,是从一堆服饰图片中,通过机器学习识别出每个服饰图片对应的分类是什么(比...

3358
来自专栏素质云笔记

keras系列︱Sequential与Model模型、keras基本结构功能(一)

不得不说,这深度学习框架更新太快了尤其到了Keras2.0版本,快到Keras中文版好多都是错的,快到官方文档也有旧的没更新,前路坑太多。 到发文为止...

1.5K8
来自专栏AI研习社

PyTorch 的预训练,是时候学习一下了

前言 最近使用 PyTorch 感觉妙不可言,有种当初使用 Keras 的快感,而且速度还不慢。各种设计直接简洁,方便研究,比 tensorflow 的臃...

41210
来自专栏逸鹏说道

码农眼中的数学之~矩阵专栏(附Numpy讲解)

吐槽一下:矩阵本身不难,但是矩阵的写作太蛋疼了 (⊙﹏⊙)汗 还好有 Numpy,不然真的崩溃了...

1414
来自专栏AI研习社

PyTorch 模型不适合自己怎么办?预训练教程在这里

前言 最近使用 PyTorch 感觉妙不可言,有种当初使用 Keras 的快感,而且速度还不慢。各种设计直接简洁,方便研究,比 tensorflow 的臃肿...

8854
来自专栏AI科技评论

开发|简单有趣的 NLP 教程:手把手教你用 PyTorch 辨别自然语言(附代码)

最近在学pyTorch的实际应用例子。这次说个简单的例子:给定一句话,判断是什么语言。这个例子是比如给定一句话: Give it to me 判断是 ENGLI...

2866

扫描关注云+社区