基于微软案例数据库数据挖掘知识点总结(结果预测篇)

前言

本篇文章主要是继续前几篇Microsoft决策树分析算法、Microsoft聚类分析算法、Microsoft Naive Bayes 算法,算法介绍后,经过这几种算法综合挖掘和分析之后,对一份摆在公司面前的人员信息列表进行推测,挖掘出这些人员信息中可能购买自行车的群体,把他们交个营销部,剩下的事就是他们无情的对这群团体骚扰、推荐、营销....结果你懂的!

本篇也是数据挖掘各层次间最高的产物,推测未知的事物。

应用场景介绍

通过前几篇文章对挖掘算法的介绍,其实应用的场景大部分是围绕着已经购买自行车这部分群体的特征、行为分析,对他们的特性进行分类挖掘,对于我们想要知道那些人会买自行车特征进行推测,但所有这些的这些都是基于已经发生的事实,而没有对未来未发生的事情进行操作,这也是本篇文章将要介绍的应用场景,通过对过去发生的事实进行分析后,来推测将要发生的事情。汗....有点八卦算命的味道。

当然可能感觉本系列对于这个行为预测有点单一,后续的文章中我们将继续开演:

1、根据往年历史产品营销情况,推测下一月、下一季度、下一年的营销业绩....,推测服务器下一个发生事故的时间点,推测一个产品的生命周期,当然这是基于时间规律推测,有兴趣的可以推测物价、房价、GDP....甚至下期彩票

2、根据以往产品销售序列记录,推测那些产品捆绑销售比较好,典型的应用场景就是超市货物摆放、电子商务网站菜单安排、站台的摆放、还有某些网站上比较恶习的相关推荐、某些聊天工具下面的产品推荐等等

3、根据以往产品投放广告扥营销手段所带来的效益,推测收益比较高的投放方式等

4、根据网站中用户点击的web流走向,推测用户兴趣所向,典型的应用场景就是:相关新闻推荐、相关图片介绍,用此来指导网站的合理布局

有兴趣的同学可以继续关注我的博客。下面咱们开始本篇内容

技术准备

(1)同样我们利用微软提供的案例数据仓库(AdventureWorksDW2008R2),两张事实表,一张已有的历史购买自行车记录的历史,另外一张就是我们将要挖掘的收集过来可能发生购买自行车的人员信息表,可以参考上一篇文章,不废话。

(2)VS2008、SQL Server、 Analysis Services没啥可介绍的,安装数据库的时候全选就可以了。


下面进入主题,同样我们继续利用上次的解决方案,依次步骤如下:

(1)打开解决方案,进入到“数据源视图”模板,首先咱们先重点来分析将要预测的这部分人员有啥信息

右键选择预测数据,我记得第一篇文章介绍过这种用法,我们来看这部分元数据,这里我们采用随机取样的方式来查看数据

点击确定,我们直接通过图表查看信息,这种方式更直接一点,来看看图;

可以看到,这张表里面包含的信息还是挺多的,其中有几个属性还能能满足咱们前几篇中决策树分析算法中看到的几个重要属性,比如:年龄、地址、年收入、家里小汽车数量、家里孩子的数量、是否有房子....等等吧,这些都是我们要利用的。

当然也可以通过透视表、透视图进行更详细的分析,这里咱就不展开了。

2、单击“挖掘结构”,我们已经建立好的数据挖掘模型,然后进入最后一个神秘的面板:挖掘模型预测

这里我们可以选择模型,这里面将列出我们前几篇文章中所建立的所有模型:

这里我们选择Microsoft决策树算法,因为这个算法是涵盖全部事实的相对最准确的预测模型,然后我们选择即将预测的事例表,也就上上面我们将要预测的人员信息表。晒图:

单击确定,vs会将相同的属性进行关联,这里可以右键这些链接线,进行查看

是吧,都有性别、是否有房、家里车的数量、家里孩子数量、年收入等,当然这些能自动关联的基础是这些列的名称是一样的,如果列名称不一样,我们可以手动关联。

比如这里我们单击 Bike Buyer 单元格并从下拉列表中选择 ProspectiveBuyer.Unknown。对我们将要预测的列进行关联,因为没有发生我们只是添加这个空白列,命名为Unknown。

我们来看一下关联之后的结果图表

第三步,编辑关联函数

这里源我们选择预测函数

在“预测函数”行的“字段”列中,选择 PredictProbability

从“挖掘模型”窗口的上方选择 [Bike Buyer],并将其拖到“条件/参数”单元格中。

单击“源”列中的下一个空行,然后选择 MicrosoftTargetTree,在 MicrosoftTargetTree行的“字段”列中,选择 Bike Buyer,在 MicrosoftTargetTree行的“条件/参数”列中,键入 =1,这里我们要预测购买自行车的群体。

将目标表中的主键列添加进入模型

最后的最后我们将将要预测的表中几个要显示的属性显示出来,比如说你肯定要知道名字,然后电话,然后住址...等等信息,方便以后骚扰...拜访...推荐等吧

第四步,运行查看结果

直接点击“结果”选项既可以看到结果,我们来看图:

哈哈....我们的被虐群体已经挖掘出来了...Angel...Alyssa..嘿嘿...所有的这些的这些我们将无情的将他们扔给营销部去。

我们点击保存按钮,将这部分群体先保存到数据库中

好了,到此我们要挖掘的结果群体已经出现了。下一步就是验证结果了。


结果分析

我们打开原有数据库,来看看源表中的数据多少,挖掘出来的群体多少:

嘿嘿...从2059个莫名的群众中,我们找到了我们最优的客户,952虽然有点少,但是这将是最优质的客户!我们重点营销的对象。然后我们来看一下明细:

根据购买概率我们来了一个排序...上图可以看到...名字叫Marvin的这货的购买自行车的概率竟然到达了0.8707,汗...还等着什么...直接电话过去..如果这厮不买自行车,真对不起咱们这次数据挖掘的结果...对不起前几篇我文章的辛勤付出..对不起人民...对不起党...呵呵...玩笑了...不买的话后面还有Roy、Albet...等等。


结语

其实针对这一系列的算法,我们已经成功预测出来了我们的结果项,数据挖掘的方式可以应用到很多场景,甚至于跨领域之间的结合,比如我一个IT人员只要你给我足够的数据,我能告诉你得糖尿病的病人他们的特征是什么?也就是说那种群体最容易得糖尿病,我会告诉你那种特征会得糖尿病几率更高,比如:体重?年龄?性别?发型?....等等吧,甚至我都能推测出某个个体在那个年龄会得糖尿病!这可可能连专治吹牛逼的老中医也不一定能做到,而我们一点医学知识都不懂,数据挖掘就是这么神奇,这就是大数据的力量。

相信未来的事情会以数据的发展去推测进行的,而这就是大数据时代的到来...

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-08-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

不懂这几个问题,怎么学好数据挖掘!

关键词:数据挖掘、DataMining、OLAP、Data Warehousing 正文如下: 1、DataMining和统计分析有什么不同? 硬要去区分Dat...

3215
来自专栏人工智能头条

谷歌人工智能算法RankBrain运行原理FAQ

1494
来自专栏人工智能头条

为什么 AI 工程师要懂一点架构?

1814
来自专栏PPV课数据科学社区

【翻译】数据科学的多语言协作编程方式:Python + R + SQL

在这篇文章中,我将试图使用一种新的方法来介绍数据科学编程。 R vs. Python question中集中谈论了数据科学编程的问题,每个人都...

2794
来自专栏DT数据侠

我做了个数据选品工具,帮你们搜寻护发神器

还在为用什么品牌的护发品烦恼吗?有了大数据,你需要做的也许只是动动指头。就读于纽约大学的一位数据侠,基于护发产品的用户评论等数据,开发了一款选品工具,本文分享...

580
来自专栏CSDN技术头条

谷歌人工智能算法RankBrain运行原理解析

近日,新闻爆料说谷歌正在使用一个机器学习人工智能系统“RankBrain”来对搜索结果排序。想知道它的工作原理以及如何在谷歌排序系统上运行吗?以下是我们对Ran...

18110
来自专栏大数据挖掘DT机器学习

为什么有些公司在机器学习业务方面倾向使用 R + Hadoop 方案?

作者:王威扬 文思海辉技术有限公司数据挖掘解决方案经理 知乎 https://www.zhihu.com/question/22145076/answer/...

3065

推荐系统介绍

我们许多人将推荐系统视为似乎知道我们思想的神秘实体。试想一下Netflix的建议电影的推荐引擎,或者是建议我们应该购买什么产品的亚马逊。自他们成立以来,这些工具...

1957
来自专栏IT派

AI工程师为什么要了解架构?

为什么AI工程师要懂一点架构? AI 时代,我们总说做科研的 AI 科学家、研究员、算法工程师离产业应用太远,这其中的一个含义是说,搞机器学习算法的人,有时候会...

2753
来自专栏量子位

为什么AI工程师要懂一点架构?| 创新工场深度学习训练营第一课

本文内容来自创新工场暑期深度学习训练营DeeCamp第一课,由讲了一上午课的创新工场AI工程院副院长王咏刚老师亲自整理,首发于他的个人公众号“半轻人”,量子位经...

3627

扫码关注云+社区