Stanford机器学习笔记-5.神经网络Neural Networks (part two)

5 Neural Networks (part two)

content:

  5 Neural Networks (part two)

    5.1 cost function

    5.2 Back Propagation

    5.3 神经网络总结

接上一篇4. Neural Networks (part one). 本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结。

5.1 cost function

(注:正则化相关内容参见3.Bayesian statistics and Regularization)

5.2 Back Propagation

(详细推导过程参见反向传播算法,以及李宏毅的机器学习课程:youtube,B站)。

图5-1 BP算法步骤

在实现反向传播算法时,有如下几个需要注意的地方。

  1. 需要对所有的连接权重(包括偏移单元)初始化为接近0但不全等于0的随机数。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,所有神经元的激活值都会取相同的值,对于任何输入x 都会有:

 )。随机初始化的目的是使对称失效。具体地,我们可以如图5-2一样随机初始化。(matlab实现见后文代码1)

  1. 如果实现的BP算法计算出的梯度(偏导数)是错误的,那么用该模型来预测新的值肯定是不科学的。所以,我们应该在应用之前就判断BP算法是否正确。具体的,可以通过数值的方法(如图5-3所示的)计算出较精确的偏导,然后再和BP算法计算出来的进行比较,若两者相差在正常的误差范围内,则BP算法计算出的应该是比较正确的,否则说明算法实现有误。注意在检查完后,在真正训练模型时不应该再运行数值计算偏导的方法,否则将会运行很慢。(matlab实现见后文代码2)
  2. 用matlab实现时要注意matlab的函数参数不能为矩阵,而连接权重为矩阵,所以在传递初始化连接权重前先将其向量化,再用reshape函数恢复。(见后文代码3)

图5-2 随机初始化连接权重

图5-3 数值方法求代价函数偏导的近似值

5.3 神经网络总结

第一步,设计神经网络结构。

隐藏层单元个数通常都是不确定的。

一般选取神经网络隐藏层单元个数的几个经验公式如下:

参考https://www.zhihu.com/question/46530834

此外,MNIST手写数字识别中给出了以不同的神经网络结构训练的结果,供参考

第二步,实现正向传播(FP)和反向传播算法,这一步包括如下的子步骤。

第三步,用数值方法检查求偏导的正确性

第四步,用梯度下降法或更先进的优化算法求使得代价函数最小的连接权重

在第四步中,由于代价函数是非凸(non-convex)函数,所以在优化过程中可能陷入局部最优值,但不一定比全局最优差很多(如图5-4),在实际应用中通常不是大问题。也会有一些启发式的算法(如模拟退火算法遗传算法等)来帮助跳出局部最优。

图5-4 陷入局部最优(不一定比全局最优差很多)

代码1:随机初始化连接权重

function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the column row of W handles the "bias" terms
%

W = zeros(L_out, 1 + L_in);


% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first row of W corresponds to the parameters for the bias units
%

epsilon_init = sqrt(6) / (sqrt(L_out+L_in));
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;

end

代码2:用数值方法求代价函数对连接权重偏导的近似值

function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
%   numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
%   gradient of the function J around theta. Calling y = J(theta) should
%   return the function value at theta.

% Notes: The following code implements numerical gradient checking, and 
%        returns the numerical gradient.It sets numgrad(i) to (a numerical 
%        approximation of) the partial derivative of J with respect to the 
%        i-th input argument, evaluated at theta. (i.e., numgrad(i) should 
%        be the (approximately) the partial derivative of J with respect 
%        to theta(i).)
%                

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
    % Set perturbation vector
    perturb(p) = e;
    % Compute Numerical Gradient
    numgrad(p) = ( J(theta + perturb) - J(theta - perturb)) / (2*e);
    perturb(p) = 0;
end
end

代码3:应用FP和BP算法实现计算隐藏层为1层的神经网络的代价函数以及其对连接权重的偏导数

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network:Theta1: 1->2; Theta2: 2->3 
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));
           
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));  
Theta2_grad = zeros(size(Theta2));

%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.

for i = 1:m
    % compute activation by Forward Propagation
    a1 = [1; X(i,:)'];
    z2 = Theta1 * a1;
    a2 = [1; sigmoid(z2)];
    z3 = Theta2 * a2;
    h = sigmoid(z3);
    
    yy = zeros(num_labels,1);
    yy(y(i)) = 1;              % 训练集的真实值yy
   
    J = J + sum(-yy .* log(h) - (1-yy) .* log(1-h));
    
    % Back Propagation 
    delta3 = h - yy;
    delta2 = (Theta2(:,2:end)' * delta3) .* sigmoidGradient(z2); %注意要除去偏移单元的连接权重
    
    Theta2_grad = Theta2_grad + delta3 * a2';   
    Theta1_grad = Theta1_grad + delta2 * a1';
end

J = J / m + lambda * (sum(sum(Theta1(:,2:end) .^ 2)) + sum(sum(Theta2(:,2:end) .^ 2))) / (2*m);

Theta2_grad = Theta2_grad / m;
Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + lambda * Theta2(:,2:end) / m; % regularized nn

Theta1_grad = Theta1_grad / m;
Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + lambda * Theta1(:,2:end) / m; % regularized nn

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];

end

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏重庆的技术分享区

3吴恩达Meachine-Learing之线性代数回顾-(Linear-Algebra-Review)

1084
来自专栏Spark学习技巧

【深度学习】笔记第一弹--神经网络

1. 神经网络前言 1.1 背景 在进入神经网络之前,先讲述两个略带血腥的实验。 第一个实验是科学家将耳朵到大脑听觉区的神经给切断了,然后将眼睛到大脑听觉区的...

2998
来自专栏PaddlePaddle

【词向量】 噪声对比估计加速词向量训练

导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提...

3517
来自专栏ATYUN订阅号

t检验的工作原理和在Python中的实现

因此,总有一天你可能会使用t检验,深入了解它的工作原理非常重要。作为开发人员,通过从头开始实现假设检验以理解。

1333
来自专栏绿巨人专栏

机器学习实战 - 读书笔记(08) - 预测数值型数据:回归

36711
来自专栏深度学习

图像分类 | 深度学习PK传统机器学习

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。 图像分类的传统方法是特征描述及检测,这类传统方法可能...

3859
来自专栏https://www.cnblogs.com/L

【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

实际上非常简单,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另...

782
来自专栏jeremy的技术点滴

机器学习课程_笔记04

3067
来自专栏深度学习

图像分类 | 深度学习PK传统机器学习

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。

44311
来自专栏机器之心

深度 | BP表达式与硬件架构:相似性构建更高效的计算单元

2817

扫码关注云+社区