使用R语言构造投资组合

原作者: 邓一硕

来自: 格物堂

构造投资组合是金融投资分析中历久弥新的问题。多年以来,学界、业界提出诸多对投资组合进行优化的方法。比如,最经典的基于收益率均值和 收益率波动性进行组合优化,由于马克维滋提出用收益率方差表示收益率的波动性,所以,这种方法又称为的$$ \sum M-V $$方法,即 Mean-Variance 方法的缩写;后来,又衍生出基于夏普比率(Sharp Ratio)的投资组合优化方法;近年来,随着VaR (Value at Risk) 和 CVaR(Conditional Vaule at Risk) 概念的兴起,基于 VaRCVaR 对投资组合进行优化的思路也开始勃兴;除此之外,对冲基金届还有一种非常有生命力的投资组合优化方法,即桥水公司(Bridge-Water)公司提出的风险均摊方法( Risk Pairy ),这种方法的核心思路在于,估计组合中各个资产的风险度及其占组合风险的比率,然后,按照该比例对组合头寸进行分配。

几种方法中,在学界和业界最收关注的还是 M-V 方法。而在 M-V 方法中最基本的一个知识点,就是构造投资组合的有效前沿。理论这里不再赘述,简单说一下其在 R 语言中的实现。构造有效前沿的步骤大致可按照获取数据、将数据加工处理为收益率矩阵、以收益率矩阵为输入计算得到有效前沿这三个步骤来完成。下面分布来说一说。

第一步,获取数据。最简单的方法是使用 quantmod 中的 getSymbols 函数。因为要要做的事是构建资产组合,因此,得同时获取多只股票的交易数据,这里取 QQQ/SPY/YHOO 三只股票为例。需要运行的代码:

# 载入 quatnmod 包require(quantmod) # 下载 QQQ/SPY/YHOO 交易数据getSymbols(c('QQQ','SPY','YHOO')) 

第二步,将交易数据处理为收益率数据。这一步可以用 dailyReturn 函数来完成。

# 计算收益率序列QQQ_ret=dailyReturn(QQQ)  SPY_ret=dailyReturn(SPY)YHOO_ret=dailyReturn(YHOO)

第三步,合并收益率序列。

dat=merge(QQQ_ret,SPY_ret,YHOO_ret)

第四步,计算投资组合的有效前沿。这一步使用 portfolioFrontier 函数来完成。由于 portfolioFrontier 函数的输入必须是 timeSeries 类,因而,得将数据类型进行转化。

## 转化为 timeSeries 类require(timeSeries)dat=as.timeSeries(dat)  ## 载入 fPortfoliorequire(fPortfolio)## 求frontier Frontier = portfolioFrontier(dat)Frontier

Title:
 MV Portfolio Frontier 
 Estimator:         covEstimator 
 Solver:            solveRquadprog 
 Optimize:          minRisk 
 Constraints:       LongOnly 
 Portfolio Points:  5 of 50 Portfolio Weights:
   daily.returns daily.returns.1 daily.returns.21         0.0000          1.0000          0.000013        0.2409          0.7541          0.005025        0.4853          0.5090          0.005737        0.7296          0.2640          0.006550        1.0000          0.0000          0.0000Covariance Risk Budgets:
   daily.returns daily.returns.1 daily.returns.21         0.0000          1.0000          0.000013        0.2355          0.7596          0.004925        0.4877          0.5065          0.005837        0.7390          0.2545          0.006550        1.0000          0.0000          0.0000Target Return and Risks:
     mean     mu    Cov  Sigma   CVaR    VaR1  0.0002 0.0002 0.0151 0.0151 0.0368 0.023313 0.0003 0.0003 0.0149 0.0149 0.0361 0.023025 0.0003 0.0003 0.0148 0.0148 0.0358 0.023437 0.0004 0.0004 0.0149 0.0149 0.0356 0.024150 0.0005 0.0005 0.0152 0.0152 0.0357 0.0249Description:
 Fri Aug 09 11:21:31 2013 by user: Owner 

上面结果中 title 部分表明的是本次操作过程中使用的相关方法。Portfolio Weights 部分返回的是三只股票在投资组合中的头寸比例,每一行的和都是 1 。对于第二行,它表示的是在投资组合中将总头寸以 24.09% 、 75.41% 、 0.50% 的比例分散到三只股票标的上。Covariance Risk Budgets 表示的是协方差风险预算矩阵。Target Return and Risks 表示目标组合的预期收益率和风险数据。

调用 plot 函数可以对上述结果进行绘图,调用 plot 之后,R 控制台会返回一组绘图选项卡:

plot(Frontier)Make a plot selection (or 0 to exit):

 1:   Plot Efficient Frontier
2:   Add Minimum Risk Portfolio
3:   Add Tangency Portfolio
4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]

各选项卡对应的绘图类型依次是:有效前沿、最小风险组合、切线组合、单个资产的风险/收益、等权重投资组合、两资产投资组合的有效前沿(禁止卖空)、模特卡罗模拟得到的投资组合、夏普比率。依次,选择可以看到相应的绘图结果:

Selection: 1Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 2Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 3Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 4Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 5Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 6Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 7Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]
Selection: 8Make a plot selection (or 0 to exit): 1:   Plot Efficient Frontier2:   Add Minimum Risk Portfolio3:   Add Tangency Portfolio4:   Add Risk/Return of Single Assets5:   Add Equal Weights Portfolio6:   Add Two Asset Frontiers [LongOnly Only]7:   Add Monte Carlo Portfolios8:   Add Sharpe Ratio [Markowitz PF Only]

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-12-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CreateAMind

carla无人驾驶模拟中文项目 carla_simulator_Chinese

1841
来自专栏ml

nyoj------20吝啬的国度

吝啬的国度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3  描述在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市...

3487
来自专栏HansBug's Lab

算法模板——splay区间反转 2

实现功能:同splay区间反转 1(基于BZOJ3223 文艺平衡树) 这次改用了一个全新的模板(HansBug:琢磨了我大半天啊有木有),大大简化了程序,同时...

26810
来自专栏工科狗和生物喵

【计算机本科补全计划】CCF计算机职业资格认证 201709-01/02详解

正文之前 貌似我找到的那个题目网站更新了一波最新的题目。不过201709 只有1、2 题,所以先做了吧(其实是我自己对能不能做出第三题 持怀疑态度!)宝宝心里苦...

3116
来自专栏数据结构与算法

BZOJ1061: [Noi2008]志愿者招募(线性规划)

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难

1214
来自专栏CreateAMind

carla无人驾驶模拟中文项目 carla_simulator_Chinese

https://github.com/xfqbuaa/carla_simulator_Chinese

1003
来自专栏HansBug's Lab

1854: [Scoi2010]游戏

1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 2538  Solved:...

2546
来自专栏tkokof 的技术,小趣及杂念

侃侃哈希表

说到哈希表,相信初通数据结构的人士应该耳熟能详,其相关的结构细节虽然并不繁复,但就快速查找数据而言,该结构优异的性能表现绝对可算一枝独秀,平均情况下O(1)的时...

661
来自专栏有刻

Java 小记 - 时间的处理与探究

时间的处理与日期的格式转换几乎是所有应用的基础职能之一,几乎所有的语言都会为其提供基础类库。作为曾经 .NET 的重度使用者,赖其优雅的语法,特别是可扩展方法这...

1655
来自专栏数据结构与算法

P2782 友好城市

题目背景 无 题目描述 有一条横贯东西的大河,河有笔直的南北两岸,岸上各有位置各不相同的N个城市。北岸的每个城市有且仅有一个友好城市在南岸,而且不同城市的友好城...

2945

扫码关注云+社区